Suppr超能文献

异质群体中的多变量遗传分析。

Multivariate genetic analyses in heterogeneous populations.

作者信息

Lubke Gitta, McArtor Daniel

机构信息

University of Notre Dame, 118 Haggar Hall, Notre Dame, IN, 46556, USA,

出版信息

Behav Genet. 2014 May;44(3):232-9. doi: 10.1007/s10519-013-9631-9. Epub 2013 Dec 6.

Abstract

Martin and Eaves (Heredity 38(1):79-95, 1977) proposed a multivariate model for twin and family data in order to investigate potential differences in the genetic and environmental architecture of multivariate phenotypes. The general form of the model is the independent pathway model, which differentiates between genetic and environmental influences at the item level, and therefore permits the decomposition to differ across items. A restricted version is the common pathway model, where the decomposition takes place at the factor level. The paper has spurred numerous studies, and evidence for differences in genetic and environmental architecture has been established for personality and several other psychiatric phenotypes by showing a better fit of the independent pathway model compared to the common pathway model. We show that genome-wide association studies (GWAS) that use an aggregate score computed from multiple questionnaire items as a univariate phenotype implicitly assume a similar structure as the common pathway model. It has been shown that in case of a differential genetic and environmental architecture, multivariate GWAS methods can outperform the univariate GWAS approach. However, current multivariate methods rely on the assumptions of phenotypic and genetic homogeneity, that is, item responses are assumed to have the same means and covariances, and genetic effects are assumed to be the same for all subjects. We describe a distance-based regression technique that is designed to account for subgroups in the population, and that therefore can account for differential genetic effects. A first evaluation with simulated data shows a substantial increase of power compared to univariate GWAS.

摘要

马丁和伊夫斯(《遗传》第38卷第1期:79 - 95页,1977年)提出了一种针对双胞胎和家庭数据的多变量模型,以研究多变量表型在遗传和环境结构方面的潜在差异。该模型的一般形式是独立路径模型,它在项目层面区分遗传和环境影响,因此允许各项目的分解有所不同。一个受限版本是共同路径模型,其分解在因子层面进行。这篇论文引发了众多研究,并且通过表明独立路径模型比共同路径模型拟合得更好,已经确定了人格及其他几种精神疾病表型在遗传和环境结构上存在差异。我们表明,将从多个问卷项目计算得出的综合得分用作单变量表型的全基因组关联研究(GWAS)隐含地假设了与共同路径模型类似的结构。已经表明,在遗传和环境结构存在差异的情况下,多变量GWAS方法可能优于单变量GWAS方法。然而,当前的多变量方法依赖于表型和遗传同质性的假设,也就是说,假设项目反应具有相同的均值和协方差,并且假设所有受试者的遗传效应相同。我们描述了一种基于距离的回归技术,该技术旨在考虑总体中的亚组,因此可以考虑不同的遗传效应。对模拟数据的首次评估表明,与单变量GWAS相比,检验效能有显著提高。

相似文献

1
Multivariate genetic analyses in heterogeneous populations.异质群体中的多变量遗传分析。
Behav Genet. 2014 May;44(3):232-9. doi: 10.1007/s10519-013-9631-9. Epub 2013 Dec 6.

本文引用的文献

7
A framework for feature selection in clustering.一种用于聚类中特征选择的框架。
J Am Stat Assoc. 2010 Jun 1;105(490):713-726. doi: 10.1198/jasa.2010.tm09415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验