University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France ; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.
PLoS One. 2013 Nov 27;8(11):e82594. doi: 10.1371/journal.pone.0082594. eCollection 2013.
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.
四氢生物蝶呤(BH4)可促进内皮型一氧化氮合酶(eNOS)的形成并稳定其活性二聚体,从而严格调节 eNOS 的偶联/解偶联。此外,在基因修饰模型中进行的研究表明,BH4 肺缺乏是肺动脉高压发病机制中的关键决定因素。因此,本研究调查了生物蝶呤代谢和 eNOS 表达,以及 sepiapterin(BH4 的前体)和 eNOS 基因缺失对低氧性肺动脉高压小鼠模型的影响。在肺部,慢性低氧增加了 BH4 水平和 eNOS 表达,但不改变二氢生物蝶呤(BH2,BH4 的氧化产物)水平、鸟苷三磷酸环化水解酶-1 或二氢叶酸还原酶表达(调节 BH4 可用性的两个关键酶)。在肺内动脉中,慢性低氧也增加了 eNOS 的表达,但没有诱导 eNOS 二聚体解偶联为单体。在低氧小鼠中,sepiapterin 可预防右心室收缩压和右心室肥厚的增加,但不改变肺内动脉的重塑或血管舒缩反应(对苯肾上腺素的超反应性,乙酰胆碱诱导的内皮依赖性舒张减少)的改变。最后,eNOS 基因缺失部分预防了低氧诱导的右心室收缩压、右心室肥厚和肺内动脉重塑的增加。综上所述,这些数据表明,在低氧性肺动脉高压中,不存在 BH4/BH2 变化和 eNOS 二聚体解偶联,这可能导致 eNOS 解偶联。因此,尽管 eNOS 基因缺失和 sepiapterin 治疗对低氧性肺血管重塑、右心室压力升高和/或右心室肥厚具有保护作用,但这些作用似乎与低氧野生型小鼠肺血管中依赖生物蝶呤的 eNOS 解偶联无关。