Suppr超能文献

空间平衡的拓扑相互作用赋予了群体模型最优的内聚性。

Spatially balanced topological interaction grants optimal cohesion in flocking models.

机构信息

College of Arts and Sciences, University of San Francisco, San Francisco, USA.

出版信息

Interface Focus. 2012 Dec 6;2(6):715-25. doi: 10.1098/rsfs.2012.0026. Epub 2012 Aug 8.

Abstract

Models of self-propelled particles (SPPs) are an indispensable tool to investigate collective animal behaviour. Originally, SPP models were proposed with metric interactions, where each individual coordinates with neighbours within a fixed metric radius. However, recent experiments on bird flocks indicate that interactions are topological: each individual interacts with a fixed number of neighbours, irrespective of their distance. It has been argued that topological interactions are more robust than metric ones against external perturbations, a significant evolutionary advantage for systems under constant predatory pressure. Here, we test this hypothesis by comparing the stability of metric versus topological SPP models in three dimensions. We show that topological models are more stable than metric ones. We also show that a significantly better stability is achieved when neighbours are selected according to a spatially balanced topological rule, namely when interacting neighbours are evenly distributed in angle around the focal individual. Finally, we find that the minimal number of interacting neighbours needed to achieve fully stable cohesion in a spatially balanced model is compatible with the value observed in field experiments on starling flocks.

摘要

自主运动粒子 (SPP) 模型是研究集体动物行为不可或缺的工具。最初,提出 SPP 模型是基于度量相互作用的,其中每个个体与固定度量半径内的邻居协调。然而,最近关于鸟类群的实验表明,相互作用是拓扑的:每个个体与固定数量的邻居相互作用,而不管它们的距离如何。有人认为,拓扑相互作用比度量相互作用更能抵抗外部干扰,这对于不断受到捕食压力的系统来说是一个重要的进化优势。在这里,我们通过比较三维空间中度量 SPP 模型与拓扑 SPP 模型的稳定性来验证这一假设。我们表明拓扑模型比度量模型更稳定。我们还表明,当根据空间平衡的拓扑规则选择邻居时,即当相互作用的邻居在焦点个体周围均匀分布在角度上时,可以实现更好的稳定性。最后,我们发现,在空间平衡模型中实现完全稳定凝聚所需的相互作用邻居的最小数量与在星鸦群的实地实验中观察到的值兼容。

相似文献

1
Spatially balanced topological interaction grants optimal cohesion in flocking models.
Interface Focus. 2012 Dec 6;2(6):715-25. doi: 10.1098/rsfs.2012.0026. Epub 2012 Aug 8.
2
Efficient flocking: metric versus topological interactions.
R Soc Open Sci. 2021 Sep 29;8(9):202158. doi: 10.1098/rsos.202158. eCollection 2021 Sep.
3
Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7. doi: 10.1073/pnas.0711437105. Epub 2008 Jan 28.
4
Emergence of the scale-invariant proportion in a flock from the metric-topological interaction.
Biosystems. 2014 May;119:62-8. doi: 10.1016/j.biosystems.2014.03.001. Epub 2014 Mar 28.
5
Fluctuation-driven flocking movement in three dimensions and scale-free correlation.
PLoS One. 2012;7(5):e35615. doi: 10.1371/journal.pone.0035615. Epub 2012 May 25.
6
Relevance of metric-free interactions in flocking phenomena.
Phys Rev Lett. 2010 Oct 15;105(16):168103. doi: 10.1103/PhysRevLett.105.168103. Epub 2010 Oct 13.
7
Is the neighborhood of interaction in human crowds metric, topological, or visual?
PNAS Nexus. 2023 May 16;2(5):pgad118. doi: 10.1093/pnasnexus/pgad118. eCollection 2023 May.
8
Diffusion and topological neighbours in flocks of starlings: relating a model to empirical data.
PLoS One. 2015 May 18;10(5):e0126913. doi: 10.1371/journal.pone.0126913. eCollection 2015.
9
Diffusion of individual birds in starling flocks.
Proc Biol Sci. 2013 Feb 13;280(1756):20122484. doi: 10.1098/rspb.2012.2484. Print 2013 Apr 7.
10
Behavioural plasticity and the transition to order in jackdaw flocks.
Nat Commun. 2019 Nov 15;10(1):5174. doi: 10.1038/s41467-019-13281-4.

引用本文的文献

1
Non-local interaction in discrete Ricci curvature-induced biological aggregation.
R Soc Open Sci. 2024 Sep 4;11(9):240794. doi: 10.1098/rsos.240794. eCollection 2024 Sep.
2
Spatial confinement affects the heterogeneity and interactions between shoaling fish.
Sci Rep. 2024 May 29;14(1):12296. doi: 10.1038/s41598-024-63245-y.
3
The Dynamic Spatial Structure of Flocks.
Entropy (Basel). 2024 Mar 7;26(3):234. doi: 10.3390/e26030234.
4
Collective evolution learning model for vision-based collective motion with collision avoidance.
PLoS One. 2023 May 10;18(5):e0270318. doi: 10.1371/journal.pone.0270318. eCollection 2023.
5
Randomness in the choice of neighbours promotes cohesion in mobile animal groups.
R Soc Open Sci. 2022 Mar 23;9(3):220124. doi: 10.1098/rsos.220124. eCollection 2022 Mar.
6
Efficient flocking: metric versus topological interactions.
R Soc Open Sci. 2021 Sep 29;8(9):202158. doi: 10.1098/rsos.202158. eCollection 2021 Sep.
7
Non-local interactions in collective motion.
R Soc Open Sci. 2021 Mar 17;8(3):201536. doi: 10.1098/rsos.201536.
8
Collective information processing in human phase separation.
Philos Trans R Soc Lond B Biol Sci. 2020 Sep 14;375(1807):20190801. doi: 10.1098/rstb.2019.0801. Epub 2020 Jul 27.
9
Flocking in complex environments-Attention trade-offs in collective information processing.
PLoS Comput Biol. 2020 Apr 6;16(4):e1007697. doi: 10.1371/journal.pcbi.1007697. eCollection 2020 Apr.
10
Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish.
PLoS Comput Biol. 2020 Mar 16;16(3):e1007194. doi: 10.1371/journal.pcbi.1007194. eCollection 2020 Mar.

本文引用的文献

1
Diffusion of individual birds in starling flocks.
Proc Biol Sci. 2013 Feb 13;280(1756):20122484. doi: 10.1098/rspb.2012.2484. Print 2013 Apr 7.
2
Statistical mechanics for natural flocks of birds.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4786-91. doi: 10.1073/pnas.1118633109. Epub 2012 Mar 16.
3
Some causes of the variable shape of flocks of birds.
PLoS One. 2011;6(8):e22479. doi: 10.1371/journal.pone.0022479. Epub 2011 Aug 4.
4
How simple rules determine pedestrian behavior and crowd disasters.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6884-8. doi: 10.1073/pnas.1016507108. Epub 2011 Apr 18.
5
Relevance of metric-free interactions in flocking phenomena.
Phys Rev Lett. 2010 Oct 15;105(16):168103. doi: 10.1103/PhysRevLett.105.168103. Epub 2010 Oct 13.
6
Limited interactions in flocks: relating model simulations to empirical data.
J R Soc Interface. 2011 Feb 6;8(55):301-4. doi: 10.1098/rsif.2010.0397. Epub 2010 Sep 8.
7
Scale-free correlations in starling flocks.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11865-70. doi: 10.1073/pnas.1005766107. Epub 2010 Jun 14.
8
Collective behavior in animal groups: theoretical models and empirical studies.
HFSP J. 2008 Aug;2(4):205-19. doi: 10.2976/1.2961038. Epub 2008 Aug 1.
9
Analyzing fish movement as a persistent turning walker.
J Math Biol. 2009 Mar;58(3):429-45. doi: 10.1007/s00285-008-0198-7. Epub 2008 Jun 28.
10
New statistical tools for analyzing the structure of animal groups.
Math Biosci. 2008 Jul-Aug;214(1-2):32-7. doi: 10.1016/j.mbs.2008.05.006. Epub 2008 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验