Suppr超能文献

基于分子动力学模拟构建 KCNQ1/KCNE1 通道模型并探测其相互作用。

Building KCNQ1/KCNE1 channel models and probing their interactions by molecular-dynamics simulations.

机构信息

Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, Virginia.

出版信息

Biophys J. 2013 Dec 3;105(11):2461-73. doi: 10.1016/j.bpj.2013.09.058.

Abstract

The slow delayed rectifier (I(KS)) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of I(KS)-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in I(KS) channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.

摘要

缓慢延迟整流钾通道(I(KS))由 KCNQ1(孔形成)和 KCNE1(辅助)亚基组成,作为人心肌复极化储备。靶向 I(KS)抗心律失常药物的设计需要 KCNQ1/KCNE1 复合物的详细三维结构,这一任务得益于 Kv 通道晶体结构(KCNQ1 同源建模模板)和 KCNE1 NMR 结构。我们的目标是构建 KCNQ1/KCNE1 模型,并通过在明确的脂质/溶剂环境中进行分子动力学模拟提取其相互作用的机制信息。我们通过确认两组与模型构建中使用的空间约束无关的模型生成预测来验证我们的模型。对分子动力学轨迹的详细分析揭示了以前未被识别的 KCNQ1/KCNE1 相互作用,这些相互作用在 I(KS)通道功能中的相关性通过电压钳实验得到了证实。我们的模型和分析表明,KCNE1 使 KCNQ1 激活减慢的三种机制:通过促进关闭激活门的 Pro 铰链处的 S6 弯曲;通过促进 S4 上门控电荷向下移动;并通过与细胞外表面上的 KCNQ1 建立静电相互作用网络,将通道稳定在预开放激活状态。我们的数据还表明 KCNE1 如何影响 KCNQ1 孔电导。

相似文献

1
Building KCNQ1/KCNE1 channel models and probing their interactions by molecular-dynamics simulations.
Biophys J. 2013 Dec 3;105(11):2461-73. doi: 10.1016/j.bpj.2013.09.058.
2
Structural basis of slow activation gating in the cardiac I Ks channel complex.
Cell Physiol Biochem. 2011;27(5):443-52. doi: 10.1159/000329965. Epub 2011 Jun 15.
3
The Ion Channel Activator Mefenamic Acid Requires KCNE1 and Modulates Channel Gating in a Subunit-Dependent Manner.
Mol Pharmacol. 2020 Feb;97(2):132-144. doi: 10.1124/mol.119.117952. Epub 2019 Nov 13.
4
Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel.
Biochemistry. 2008 Aug 5;47(31):7999-8006. doi: 10.1021/bi800875q. Epub 2008 Jul 9.
5
Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation.
Elife. 2020 Oct 23;9:e57680. doi: 10.7554/eLife.57680.
6
Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit.
Eur J Pharmacol. 2010 Jul 10;637(1-3):138-47. doi: 10.1016/j.ejphar.2010.04.001. Epub 2010 Apr 21.
7
Steric hindrance between S4 and S5 of the KCNQ1/KCNE1 channel hampers pore opening.
Nat Commun. 2014 Jun 12;5:4100. doi: 10.1038/ncomms5100.
8
Gating-related molecular motions in the extracellular domain of the IKs channel: implications for IKs channelopathy.
J Membr Biol. 2011 Feb;239(3):137-56. doi: 10.1007/s00232-010-9333-7. Epub 2010 Dec 9.
9
Probing the structural basis for differential KCNQ1 modulation by KCNE1 and KCNE2.
J Gen Physiol. 2012 Dec;140(6):653-69. doi: 10.1085/jgp.201210847.
10
A comprehensive structural model for the human KCNQ1/KCNE1 ion channel.
J Mol Graph Model. 2017 Nov;78:26-47. doi: 10.1016/j.jmgm.2017.09.019. Epub 2017 Sep 29.

引用本文的文献

1
Dynamic protein-protein interactions of KCNQ1 and KCNE1 measured by EPR line shape analysis.
Biochim Biophys Acta Biomembr. 2024 Oct;1866(7):184377. doi: 10.1016/j.bbamem.2024.184377. Epub 2024 Aug 3.
3
Modulation of the I channel by PIP requires two binding sites per monomer.
BBA Adv. 2023 Jan 7;3:100073. doi: 10.1016/j.bbadva.2023.100073. eCollection 2023.
4
The role of native cysteine residues in the oligomerization of KCNQ1 channels.
Biochem Biophys Res Commun. 2023 Jun 4;659:34-39. doi: 10.1016/j.bbrc.2023.03.082. Epub 2023 Mar 31.
5
Purification and membrane interactions of human KCNQ1 potassium ion channel.
Biochim Biophys Acta Biomembr. 2022 Nov 1;1864(11):184010. doi: 10.1016/j.bbamem.2022.184010. Epub 2022 Jul 21.
6
Finite element analysis of the influence of cyclic strain on cells anchored to substrates with varying properties.
Med Biol Eng Comput. 2022 Jan;60(1):171-187. doi: 10.1007/s11517-021-02453-4. Epub 2021 Nov 16.
7
8
Control of Slc7a5 sensitivity by the voltage-sensing domain of Kv1 channels.
Elife. 2020 Nov 9;9:e54916. doi: 10.7554/eLife.54916.
9
Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation.
Elife. 2020 Oct 23;9:e57680. doi: 10.7554/eLife.57680.
10
Polyunsaturated Fatty Acids as Modulators of K7 Channels.
Front Physiol. 2020 Jun 11;11:641. doi: 10.3389/fphys.2020.00641. eCollection 2020.

本文引用的文献

1
Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13180-5. doi: 10.1073/pnas.1305167110. Epub 2013 Jul 16.
2
Molecular dynamics simulations of the adenosine A2a receptor: structural stability, sampling, and convergence.
J Chem Inf Model. 2013 May 24;53(5):1168-78. doi: 10.1021/ci300610w. Epub 2013 Apr 25.
3
IKs channels open slowly because KCNE1 accessory subunits slow the movement of S4 voltage sensors in KCNQ1 pore-forming subunits.
Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):E559-66. doi: 10.1073/pnas.1222616110. Epub 2013 Jan 28.
4
Probing the structural basis for differential KCNQ1 modulation by KCNE1 and KCNE2.
J Gen Physiol. 2012 Dec;140(6):653-69. doi: 10.1085/jgp.201210847.
6
How does KCNE1 regulate the Kv7.1 potassium channel? Model-structure, mutations, and dynamics of the Kv7.1-KCNE1 complex.
Structure. 2012 Aug 8;20(8):1343-52. doi: 10.1016/j.str.2012.05.016. Epub 2012 Jul 5.
8
Characterization of KCNQ1 atrial fibrillation mutations reveals distinct dependence on KCNE1.
J Gen Physiol. 2012 Feb;139(2):135-44. doi: 10.1085/jgp.201110672. Epub 2012 Jan 16.
10
Structural basis of slow activation gating in the cardiac I Ks channel complex.
Cell Physiol Biochem. 2011;27(5):443-52. doi: 10.1159/000329965. Epub 2011 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验