Center for Structural Biology, Vanderbilt University, Nashville, United States.
Department of Chemistry, Vanderbilt University, Nashville, United States.
Elife. 2020 Oct 23;9:e57680. doi: 10.7554/eLife.57680.
The function of the voltage-gated KCNQ1 potassium channel is regulated by co-assembly with KCNE auxiliary subunits. KCNQ1-KCNE1 channels generate the slow delayed rectifier current, I, which contributes to the repolarization phase of the cardiac action potential. A three amino acid motif (F57-T58-L59, FTL) in KCNE1 is essential for slow activation of KCNQ1-KCNE1 channels. However, how this motif interacts with KCNQ1 to control its function is unknown. Combining computational modeling with electrophysiological studies, we developed structural models of the KCNQ1-KCNE1 complex that suggest how KCNE1 controls KCNQ1 activation. The FTL motif binds at a cleft between the voltage-sensing and pore domains and appears to affect the channel gate by an allosteric mechanism. Comparison with the KCNQ1-KCNE3 channel structure suggests a common transmembrane-binding mode for different KCNEs and illuminates how specific differences in the interaction of their triplet motifs determine the profound differences in KCNQ1 functional modulation by KCNE1 versus KCNE3.
电压门控 KCNQ1 钾通道的功能受与其辅助亚基 KCNE 共同组装的调节。KCNQ1-KCNE1 通道产生缓慢延迟整流电流 I,该电流有助于心脏动作电位的复极化阶段。KCNE1 中的三个氨基酸基序(F57-T58-L59,FTL)对于 KCNQ1-KCNE1 通道的缓慢激活是必需的。然而,该基序如何与 KCNQ1 相互作用以控制其功能尚不清楚。我们结合计算建模和电生理研究,开发了 KCNQ1-KCNE1 复合物的结构模型,这些模型表明 KCNE1 如何控制 KCNQ1 的激活。FTL 基序结合在电压感应和孔域之间的裂隙中,似乎通过变构机制影响通道门。与 KCNQ1-KCNE3 通道结构的比较表明,不同 KCNE 的跨膜结合模式相同,并阐明了它们三联体基序相互作用的特定差异如何决定 KCNE1 与 KCNE3 对 KCNQ1 功能调节的显著差异。