Suppr超能文献

基于多图谱的脑部分割的联合标签融合生成概率模型。

A generative probability model of joint label fusion for multi-atlas based brain segmentation.

作者信息

Wu Guorong, Wang Qian, Zhang Daoqiang, Nie Feiping, Huang Heng, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA; Department of Computer Science, University of North Carolina at Chapel Hill, USA.

出版信息

Med Image Anal. 2014 Aug;18(6):881-90. doi: 10.1016/j.media.2013.10.013. Epub 2013 Nov 16.

Abstract

Automated labeling of anatomical structures in medical images is very important in many neuroscience studies. Recently, patch-based labeling has been widely investigated to alleviate the possible mis-alignment when registering atlases to the target image. However, the weights used for label fusion from the registered atlases are generally computed independently and thus lack the capability of preventing the ambiguous atlas patches from contributing to the label fusion. More critically, these weights are often calculated based only on the simple patch similarity, thus not necessarily providing optimal solution for label fusion. To address these limitations, we propose a generative probability model to describe the procedure of label fusion in a multi-atlas scenario, for the goal of labeling each point in the target image by the best representative atlas patches that also have the largest labeling unanimity in labeling the underlying point correctly. Specifically, sparsity constraint is imposed upon label fusion weights, in order to select a small number of atlas patches that best represent the underlying target patch, thus reducing the risks of including the misleading atlas patches. The labeling unanimity among atlas patches is achieved by exploring their dependencies, where we model these dependencies as the joint probability of each pair of atlas patches in correctly predicting the labels, by analyzing the correlation of their morphological error patterns and also the labeling consensus among atlases. The patch dependencies will be further recursively updated based on the latest labeling results to correct the possible labeling errors, which falls to the Expectation Maximization (EM) framework. To demonstrate the labeling performance, we have comprehensively evaluated our patch-based labeling method on the whole brain parcellation and hippocampus segmentation. Promising labeling results have been achieved with comparison to the conventional patch-based labeling method, indicating the potential application of the proposed method in the future clinical studies.

摘要

在许多神经科学研究中,医学图像中解剖结构的自动标注非常重要。最近,基于补丁的标注方法得到了广泛研究,以减轻在将图谱注册到目标图像时可能出现的错位问题。然而,用于从注册图谱进行标签融合的权重通常是独立计算的,因此缺乏防止模糊的图谱补丁对标签融合产生影响的能力。更关键的是,这些权重通常仅基于简单的补丁相似度计算,因此不一定能为标签融合提供最优解。为了解决这些局限性,我们提出了一种生成概率模型来描述多图谱场景下的标签融合过程,目标是通过最佳代表性的图谱补丁对目标图像中的每个点进行标注,这些补丁在正确标注基础点时也具有最大的标注一致性。具体而言,对标签融合权重施加稀疏性约束,以选择少量最能代表基础目标补丁的图谱补丁,从而降低包含误导性图谱补丁的风险。通过探索图谱补丁之间的依赖性来实现图谱补丁之间的标注一致性,我们将这些依赖性建模为每对图谱补丁在正确预测标签时的联合概率,通过分析它们的形态学误差模式的相关性以及图谱之间的标注共识来实现。补丁依赖性将根据最新的标注结果进一步递归更新,以纠正可能的标注错误,这属于期望最大化(EM)框架。为了展示标注性能,我们在全脑分割和海马体分割上全面评估了我们基于补丁的标注方法。与传统的基于补丁的标注方法相比,取得了有前景的标注结果,表明该方法在未来临床研究中的潜在应用。

相似文献

3
Patch spaces and fusion strategies in patch-based label fusion.基于图块的标签融合中的补丁空间和融合策略。
Comput Med Imaging Graph. 2019 Jan;71:79-89. doi: 10.1016/j.compmedimag.2018.11.004. Epub 2018 Dec 6.
5
Multi-Atlas Segmentation with Joint Label Fusion.基于联合标签融合的多图谱分割
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
9
Progressive multi-atlas label fusion by dictionary evolution.基于字典进化的渐进式多图谱标签融合。
Med Image Anal. 2017 Feb;36:162-171. doi: 10.1016/j.media.2016.11.005. Epub 2016 Nov 24.
10
Robust multi-atlas label propagation by deep sparse representation.基于深度稀疏表示的鲁棒多图谱标签传播
Pattern Recognit. 2017 Mar;63:511-517. doi: 10.1016/j.patcog.2016.09.028. Epub 2016 Sep 21.

引用本文的文献

7
[Research on brain image segmentation based on deep learning].基于深度学习的脑图像分割研究
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Aug 25;37(4):721-729. doi: 10.7507/1001-5515.201912050.
9
PSACNN: Pulse sequence adaptive fast whole brain segmentation.PSACNN:脉冲序列自适应快速全脑分割。
Neuroimage. 2019 Oct 1;199:553-569. doi: 10.1016/j.neuroimage.2019.05.033. Epub 2019 May 24.
10
3D whole brain segmentation using spatially localized atlas network tiles.使用空间局部化图谱网络瓦片进行 3D 全脑分割。
Neuroimage. 2019 Jul 1;194:105-119. doi: 10.1016/j.neuroimage.2019.03.041. Epub 2019 Mar 23.

本文引用的文献

3
Deformable segmentation via sparse representation and dictionary learning.基于稀疏表示和字典学习的可变形分割。
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.
4
Rates of decline in Alzheimer disease decrease with age.阿尔茨海默病的衰退率随年龄增长而降低。
PLoS One. 2012;7(8):e42325. doi: 10.1371/journal.pone.0042325. Epub 2012 Aug 2.
5
Multi-Atlas Segmentation with Joint Label Fusion.基于联合标签融合的多图谱分割
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
6
LABEL: pediatric brain extraction using learning-based meta-algorithm.标签:基于学习的元算法进行儿科脑提取。
Neuroimage. 2012 Sep;62(3):1975-86. doi: 10.1016/j.neuroimage.2012.05.042. Epub 2012 May 24.
7
Regression-Based Label Fusion for Multi-Atlas Segmentation.基于回归的标签融合用于多图谱分割
Conf Comput Vis Pattern Recognit Workshops. 2011 Jun 20:1113-1120. doi: 10.1109/CVPR.2011.5995382.
9
Towards robust and effective shape modeling: sparse shape composition.走向健壮而有效的形状建模:稀疏形状组合。
Med Image Anal. 2012 Jan;16(1):265-77. doi: 10.1016/j.media.2011.08.004. Epub 2011 Sep 5.
10
A supervised patch-based approach for human brain labeling.基于监督的斑块方法进行人脑标记。
IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62. doi: 10.1109/TMI.2011.2156806. Epub 2011 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验