Suppr超能文献

大脑皮层的二阶盲辨识。

Second order blind identification on the cerebral cortex.

机构信息

Signal & Image Processing Institute, University of Southern California, Los Angeles, CA, USA.

McGovern Inst., Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

J Neurosci Methods. 2014 Feb 15;223:40-9. doi: 10.1016/j.jneumeth.2013.11.023. Epub 2013 Dec 6.

Abstract

Blind source separation (BSS) methods have become standard brain imaging tools and are routinely used for noise and artifact removal, as well as for extracting related spatial and temporal components from brain signals. Despite their popularity, BSS methods have rarely been used to explore maps of cortical thickness and sulcal folding patterns. Our limited knowledge of the relationship between cortical morphometry, brain development and pathologies of the central nervous system makes BSS methods ideal investigative tools. We propose a novel spatial BSS method tailored for application to the cerebral cortex based on the second order blind identification (SOBI) method. Our method outperforms the regular SOBI and popular FastICA BSS methods on simulations. Application to maps of cortical thickness and curvature from normal controls reveals original structural networks.

摘要

盲源分离 (BSS) 方法已成为标准的脑成像工具,常用于去除噪声和伪影,以及从脑信号中提取相关的空间和时间成分。尽管它们很受欢迎,但 BSS 方法很少用于探索皮质厚度图和脑回折叠模式。我们对皮质形态、大脑发育和中枢神经系统病变之间关系的了解有限,这使得 BSS 方法成为理想的研究工具。我们提出了一种新颖的基于二阶盲辨识 (SOBI) 方法的适用于大脑皮层的空间 BSS 方法。我们的方法在模拟中优于常规 SOBI 和流行的 FastICA BSS 方法。应用于正常对照的皮质厚度和曲率图揭示了原始的结构网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验