Signal & Image Processing Institute, University of Southern California, Los Angeles, CA, USA.
McGovern Inst., Massachusetts Institute of Technology, Cambridge, MA, USA.
J Neurosci Methods. 2014 Feb 15;223:40-9. doi: 10.1016/j.jneumeth.2013.11.023. Epub 2013 Dec 6.
Blind source separation (BSS) methods have become standard brain imaging tools and are routinely used for noise and artifact removal, as well as for extracting related spatial and temporal components from brain signals. Despite their popularity, BSS methods have rarely been used to explore maps of cortical thickness and sulcal folding patterns. Our limited knowledge of the relationship between cortical morphometry, brain development and pathologies of the central nervous system makes BSS methods ideal investigative tools. We propose a novel spatial BSS method tailored for application to the cerebral cortex based on the second order blind identification (SOBI) method. Our method outperforms the regular SOBI and popular FastICA BSS methods on simulations. Application to maps of cortical thickness and curvature from normal controls reveals original structural networks.
盲源分离 (BSS) 方法已成为标准的脑成像工具,常用于去除噪声和伪影,以及从脑信号中提取相关的空间和时间成分。尽管它们很受欢迎,但 BSS 方法很少用于探索皮质厚度图和脑回折叠模式。我们对皮质形态、大脑发育和中枢神经系统病变之间关系的了解有限,这使得 BSS 方法成为理想的研究工具。我们提出了一种新颖的基于二阶盲辨识 (SOBI) 方法的适用于大脑皮层的空间 BSS 方法。我们的方法在模拟中优于常规 SOBI 和流行的 FastICA BSS 方法。应用于正常对照的皮质厚度和曲率图揭示了原始的结构网络。