Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Sensors (Basel). 2013 Dec 5;13(12):16714-35. doi: 10.3390/s131216714.
State-of-the-art parallel MRI techniques either explicitly or implicitly require certain parameters to be estimated, e.g., the sensitivity map for SENSE, SMASH and interpolation weights for GRAPPA, SPIRiT. Thus all these techniques are sensitive to the calibration (parameter estimation) stage. In this work, we have proposed a parallel MRI technique that does not require any calibration but yields reconstruction results that are at par with (or even better than) state-of-the-art methods in parallel MRI. Our proposed method required solving non-convex analysis and synthesis prior joint-sparsity problems. This work also derives the algorithms for solving them. Experimental validation was carried out on two datasets-eight channel brain and eight channel Shepp-Logan phantom. Two sampling methods were used-Variable Density Random sampling and non-Cartesian Radial sampling. For the brain data, acceleration factor of 4 was used and for the other an acceleration factor of 6 was used. The reconstruction results were quantitatively evaluated based on the Normalised Mean Squared Error between the reconstructed image and the originals. The qualitative evaluation was based on the actual reconstructed images. We compared our work with four state-of-the-art parallel imaging techniques; two calibrated methods-CS SENSE and l1SPIRiT and two calibration free techniques-Distributed CS and SAKE. Our method yields better reconstruction results than all of them.
最先进的并行磁共振成像技术(MRI)要么明确要么隐含地需要估计某些参数,例如,灵敏度图用于 SENSE、SMASH 和 GRAPPA、SPIRiT 的插值权重。因此,所有这些技术都对校准(参数估计)阶段敏感。在这项工作中,我们提出了一种不需要任何校准但能产生与并行 MRI 中最先进方法相当(甚至更好)的重建结果的并行 MRI 技术。我们提出的方法需要解决非凸分析和合成先验联合稀疏问题。这项工作还推导出了解决它们的算法。在两个数据集——八个通道的大脑和八个通道的 Shepp-Logan 幻影上进行了实验验证。使用了两种采样方法——可变密度随机采样和非笛卡尔径向采样。对于大脑数据,使用了 4 的加速因子,而对于其他数据,则使用了 6 的加速因子。根据重建图像与原始图像之间的归一化均方误差对重建结果进行定量评估。定性评估基于实际的重建图像。我们将我们的工作与四种最先进的并行成像技术进行了比较;两种校准方法——CS SENSE 和 l1SPIRiT 以及两种无校准方法——分布式 CS 和 SAKE。我们的方法的重建结果优于所有这些方法。