Suppr超能文献

面向以数据为中心的估计方法的最优输入信号设计

Optimal Input Signal Design for Data-Centric Estimation Methods.

作者信息

Deshpande Sunil, Rivera Daniel E

机构信息

Control Systems Engineering Laboratory (CSEL), Arizona State University, Tempe, AZ, USA. Doctoral student in the electrical engineering program at Arizona State.

出版信息

Proc Am Control Conf. 2013:3924-3929. doi: 10.1109/acc.2013.6580439.

Abstract

Data-centric estimation methods such as Model-on-Demand and Direct Weight Optimization form attractive techniques for estimating unknown functions from noisy data. These methods rely on generating a local function approximation from a database of regressors at the current operating point with the process repeated at each new operating point. This paper examines the design of optimal input signals formulated to produce informative data to be used by local modeling procedures. The proposed method specifically addresses the distribution of the regressor vectors. The design is examined for a linear time-invariant system under amplitude constraints on the input. The resulting optimization problem is solved using semidefinite relaxation methods. Numerical examples show the benefits in comparison to a classical PRBS input design.

摘要

以数据为中心的估计方法,如按需建模和直接权重优化,是从噪声数据中估计未知函数的有吸引力的技术。这些方法依赖于在当前工作点从回归器数据库生成局部函数近似,并在每个新的工作点重复该过程。本文研究了为产生供局部建模程序使用的信息性数据而制定的最优输入信号的设计。所提出的方法专门解决回归器向量的分布问题。针对输入受幅度约束的线性时不变系统进行了设计研究。使用半定松弛方法解决由此产生的优化问题。数值例子表明了与经典伪随机二进制序列(PRBS)输入设计相比的优势。

相似文献

3
Free Final Time Input Design Problem for Robust Entropy-Like System Parameter Estimation.
Entropy (Basel). 2018 Jul 14;20(7):528. doi: 10.3390/e20070528.
4
Optimal input design for multi UAVs formation anomaly detection.
ISA Trans. 2019 Aug;91:157-165. doi: 10.1016/j.isatra.2019.01.027. Epub 2019 Feb 4.
8
Input and state estimation for linear systems with a rank-deficient direct feedthrough matrix.
ISA Trans. 2015 Jul;57:57-62. doi: 10.1016/j.isatra.2015.02.005. Epub 2015 Mar 7.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验