Xu Song, Li Yang, Guo Qi, Yang Xiao-Feng, Chan Rosa H M
Department of Automation Sciences and Electrical Engineering, Beihang University, Beijing 100191, China.
Department of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China.
J Neurosci Methods. 2017 Feb 15;278:46-56. doi: 10.1016/j.jneumeth.2016.12.018. Epub 2017 Jan 4.
Tracking the changes of neural dynamics based on neuronal spiking activities is a critical step to understand the neurobiological basis of learning from behaving animals. These dynamical neurobiological processes associated with learning are also time-varying, which makes the modeling problem challenging.
We developed a novel multiwavelet-based time-varying generalized Laguerre-Volterra (TVGLV) modeling framework to study the time-varying neural dynamical systems using natural spike train data. By projecting the time-varying parameters in the TVGLV model onto a finite sequence of multiwavelet basis functions, the time-varying identification problem is converted into a time invariant linear-in-the-parameters one. An effective forward orthogonal regression (FOR) algorithm aided by mutual information (MI) criterion is then applied for the selection of significant model regressors or terms and the refinement of model structure. A generalized linear model fit approach is finally employed for parameter estimation from spike train data.
The proposed multiwavelet-based TVGLV approach is used to identify both synthetic input-output spike trains and spontaneous retinal spike train recordings. The proposed method gives excellent the performance of tracking either sharply or slowly changing parameters with high sensitivity and accuracy regardless of the a priori knowledge of spike trains, which these results indicate that the proposed method is shown to deal well with spike train data.
The proposed multiwavelet-based TVGLV approach was compared with several state-of-art parametric estimation methods like the steepest descent point process filter (SDPPF) or Chebyshev polynomial expansion method. The conventional SDPPF algorithm, or SDPPF with B-splines wavelet expansion method was shown to have the poor performance of tracking the time-varying system changes with the synthetic spike train data due to the slow convergence of the adaptive filter methods. Although the Chebyshev polynomial basis function method gave the good parametric estimation results, it requires prior parameter estimation. It was shown that the proposed multiwavelet-based TVGLV method can track the time-varying parameter changes rapidly and accurately.
The multiwavelet-based TVGLV modeling framework developed in this paper can not only provide a computational modeling scheme for investigating such nonstationary properties, track more general forms of changes in time-varying neural dynamics, and but also may potentially be applied to investigate the spatial-temporal information underlying biomedical spiking signals.
基于神经元放电活动追踪神经动力学变化是理解行为动物学习的神经生物学基础的关键步骤。这些与学习相关的动态神经生物学过程也是随时间变化的,这使得建模问题具有挑战性。
我们开发了一种基于多小波的新型时变广义拉盖尔 - 沃尔泰拉(TVGLV)建模框架,以使用自然尖峰序列数据研究时变神经动力学系统。通过将TVGLV模型中的时变参数投影到多小波基函数的有限序列上,时变识别问题被转化为参数线性不变的问题。然后应用一种由互信息(MI)准则辅助的有效前向正交回归(FOR)算法来选择重要的模型回归变量或项,并优化模型结构。最后采用广义线性模型拟合方法从尖峰序列数据中进行参数估计。
所提出的基于多小波的TVGLV方法用于识别合成的输入 - 输出尖峰序列和自发视网膜尖峰序列记录。无论尖峰序列的先验知识如何,所提出的方法都能以高灵敏度和准确性出色地跟踪急剧或缓慢变化的参数,这些结果表明所提出的方法能很好地处理尖峰序列数据。
将所提出的基于多小波的TVGLV方法与几种先进的参数估计方法进行比较,如最速下降点过程滤波器(SDPPF)或切比雪夫多项式展开方法。传统的SDPPF算法或带有B样条小波展开方法的SDPPF,由于自适应滤波器方法收敛缓慢,在跟踪合成尖峰序列数据的时变系统变化方面表现不佳。尽管切比雪夫多项式基函数方法给出了良好的参数估计结果,但它需要先进行参数估计。结果表明,所提出的基于多小波的TVGLV方法能够快速准确地跟踪时变参数变化。
本文开发的基于多小波的TVGLV建模框架不仅可以为研究此类非平稳特性提供一种计算建模方案,跟踪时变神经动力学中更一般形式的变化,而且还可能潜在地应用于研究生物医学尖峰信号背后的时空信息。