Suppr超能文献

Spontaneous vesicularization of myelin lipids is counteracted by myelin basic protein.

作者信息

Fraser P E, Moscarello M A, Rand R P, Deber C M

出版信息

Biochim Biophys Acta. 1986 Dec 16;863(2):282-8. doi: 10.1016/0005-2736(86)90268-3.

Abstract

Hand-vortexed dispersions of several lipids (cerebrosides, sulfatides, PC, PE, PS and sphingomyelin), mixed in the ratios found for these categories of lipids in myelin, exhibit 31P-NMR spectra which have contributions from both isotropic and lamellar resonances. Investigation of this system by freeze-fracture electron microscopy and X-ray diffraction revealed that this lipid mixture has spontaneously formed small unilamellar vesicles (SUVs) (diam. approximately 400 A) and large highly convoluted unilamellar vesicles (LUVs) (diam. approximately 1000 A), the latter possibly resulting from aggregation and fusion of the SUV structures. This vesicularization of the myelin lipids was reversed by the addition of myelin basic protein: only large multilamellar aggregates were formed in the presence of protein, as shown by all three experimental methods. Although no rigorous physical-chemical explanation for these phenomena is yet available, the possibility is suggested that the high concentration of cerebrosides and/or phosphatidylethanolamine in this particular mixture of myelin lipids play pivotal roles in the formation of these unusual vesicles. Spontaneous vesicularization of myelin lipids is discussed as a potential pathway toward destabilization of the myelin sheath.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验