Suppr超能文献

生物材料冷冻过程中附着于胶原基质的细胞的时空细胞内变形测量。

Measurement of spatiotemporal intracellular deformation of cells adhered to collagen matrix during freezing of biomaterials.

作者信息

Ghosh Soham, Craig Dutton J, Han Bumsoo

出版信息

J Biomech Eng. 2014 Feb;136(2):021025. doi: 10.1115/1.4026180.

Abstract

Preservation of structural integrity inside cells and at cell-extracellular matrix (ECM) interfaces is a key challenge during freezing of biomaterials. Since the post-thaw functionality of cells depends on the extent of change in the cytoskeletal structure caused by complex cell-ECM adhesion, spatiotemporal deformation inside the cell was measured using a newly developed microbead-mediated particle tracking deformetry (PTD) technique using fibroblast-seeded dermal equivalents as a model tissue. Fibronectin-coated 500 nm diameter microbeads were internalized in cells, and the microbead-labeled cells were used to prepare engineered tissue with type I collagen matrices. After a 24 h incubation the engineered tissues were directionally frozen, and the cells were imaged during the process. The microbeads were tracked, and spatiotemporal deformation inside the cells was computed from the tracking data using the PTD method. Effects of particle size on the deformation measurement method were tested, and it was found that microbeads represent cell deformation to acceptable accuracy. The results showed complex spatiotemporal deformation patterns in the cells. Large deformation in the cells and detachments of cells from the ECM were observed. At the cellular scale, variable directionality of the deformation was found in contrast to the one-dimensional deformation pattern observed at the tissue scale, as found from earlier studies. In summary, this method can quantify the spatiotemporal deformation in cells and can be correlated to the freezing-induced change in the structure of cytosplasm and of the cell-ECM interface. As a broader application, this method may be used to compute deformation of cells in the ECM environment for physiological processes, namely cell migration, stem cell differentiation, vasculogenesis, and cancer metastasis, which have relevance to quantify mechanotransduction.

摘要

在生物材料冷冻过程中,保持细胞内部以及细胞与细胞外基质(ECM)界面处的结构完整性是一项关键挑战。由于解冻后细胞的功能取决于复杂的细胞 - ECM黏附所导致的细胞骨架结构变化程度,因此使用新开发的微珠介导粒子追踪变形测量(PTD)技术,以接种成纤维细胞的真皮替代物作为模型组织,来测量细胞内部的时空变形。将纤连蛋白包被的直径500 nm的微珠内化到细胞中,并用微珠标记的细胞制备含I型胶原基质的工程组织。孵育24小时后,对工程组织进行定向冷冻,并在冷冻过程中对细胞进行成像。追踪微珠,并使用PTD方法根据追踪数据计算细胞内部的时空变形。测试了颗粒大小对变形测量方法的影响,发现微珠能够以可接受的精度反映细胞变形。结果显示细胞中存在复杂的时空变形模式。观察到细胞内的大变形以及细胞与ECM的分离。在细胞尺度上,发现变形具有可变的方向性,这与早期研究中在组织尺度上观察到的一维变形模式形成对比。总之,该方法可以量化细胞中的时空变形,并可与冷冻诱导的细胞质结构和细胞 - ECM界面变化相关联。作为更广泛应用,该方法可用于计算ECM环境中细胞在生理过程(即细胞迁移、干细胞分化、血管生成和癌症转移)中的变形,这些生理过程与量化机械转导相关。

相似文献

本文引用的文献

3
Highly stretchable and tough hydrogels.高拉伸和坚韧的水凝胶。
Nature. 2012 Sep 6;489(7414):133-6. doi: 10.1038/nature11409.
9
Biobanking: the foundation of personalized medicine.生物库:个性化医疗的基础。
Curr Opin Oncol. 2011 Jan;23(1):112-9. doi: 10.1097/CCO.0b013e32834161b8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验