* School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
Exp Physiol. 2014 Feb;99(2):332-9. doi: 10.1113/expphysiol.2013.072678. Epub 2013 Dec 6.
What is the topic of this review? This review gives an update on the cellular and molecular mechanisms within the autonomic nervous system involved in non-pathological and pathological cardiovascular regulation. What advances does it highlight? For cardiovascular homeostasis in non-pathological conditions to be maintained, discrete neural networks using specified signalling mechanisms at both cellular and molecular levels are required. In heart failure, the cell signalling protein partners CAPON and PIN decrease the bioavailability of nitric oxide by inhibiting neuronal nitric oxide synthase activity, leading to the removal of tonic neuronal inhibition. Following a myocardial infarction, pro-inflammatory cytokines in the paraventricular nucleus and the subsequent generation of reactive oxygen species, via angiotensin II activation of the angiotensin II type 1 receptor, increase neuronal excitability further, leading to sympathetic excitation. A pathological feature of heart failure is abnormal control of the sympathetic nervous system. The paraventricular nucleus of the hypothalamus (PVN) is one of the most important central sites involved in regulating sympathetic tone and is, in part, responsible for the dysregulation of the sympathetic nervous system evident in heart failure. Generation of sympathetic tone in response to fluctuations in cardiovascular regulation uses discrete anatomical pathways and neurochemical modulators. Direct and indirect projections from the PVN pre-autonomic neurons innervate the sympathetic preganglionic neurons in the spinal cord, which in turn innervate sympathetic ganglia that give rise to the sympathetic nerves. Pre-autonomic neurons of the PVN themselves receive an afferent input arising from the nucleus tractus solitarii, and viscerosensory receptors convey cardiovascular fluctuations to the nucleus tractus solitarii. The PVN contains excitatory and inhibitory neurons, whose balance determines the sympathetic tone. In non-pathological conditions, the tonic inhibition of the PVN pre-autonomic neurons is mediated by GABA- and NO-releasing neurons. In heart failure, the pre-autonomic neurons are disinhibited by the actions of the excitatory neurotransmitters glutamate and angiotensin II, leading to increased sympathetic activity. A key feature of the disinhibition is a reduction in the bioavailability of NO as a consequence of disrupted CAPON and PIN signalling mechanisms within the neuron. Another critical feature that contributes to increased neuronal excitation within the PVN is the production of pro-inflammatory cytokines immediately following a myocardial infarction, the activation of the angiotensin II type 1 receptor and the production of reactive oxygen species. By examining the changes associated with the sympathetic nervous system pathway, we will progress our understanding of sympathetic regulation in heart failure, identify gaps in our knowledge and suggest new therapeutic strategies.
这篇综述的主题是什么?本文综述了自主神经系统中涉及非病理性和病理性心血管调节的细胞和分子机制。它强调了哪些进展?为了维持非病理性条件下的心血管稳态,需要离散的神经网络在细胞和分子水平上使用特定的信号机制。在心衰中,细胞信号蛋白伴侣 CAPON 和 PIN 通过抑制神经元型一氧化氮合酶活性来减少一氧化氮的生物利用度,导致紧张性神经元抑制的消除。心肌梗死后,室旁核中的促炎细胞因子以及随后通过血管紧张素 II 激活血管紧张素 II 型 1 受体产生的活性氧,进一步增加神经元兴奋性,导致交感神经兴奋。心衰的一个病理性特征是交感神经系统的异常控制。下丘脑室旁核(PVN)是参与调节交感神经张力的最重要的中枢部位之一,部分负责心衰中明显的交感神经调节失调。心血管调节波动时产生的交感神经张力使用离散的解剖途径和神经化学调节剂。PVN 的直接和间接预自主神经元投射到脊髓的交感节前神经元,交感节前神经元反过来支配产生交感神经的交感神经节。PVN 的预自主神经元本身接收来自孤束核的传入输入,内脏感觉感受器将心血管波动传递到孤束核。PVN 包含兴奋性和抑制性神经元,其平衡决定了交感神经张力。在非病理性条件下,PVN 预自主神经元的紧张性抑制由 GABA 和 NO 释放神经元介导。在心衰中,预自主神经元被兴奋性神经递质谷氨酸和血管紧张素 II 的作用去抑制,导致交感活性增加。去抑制的一个关键特征是由于神经元内 CAPON 和 PIN 信号机制的破坏,NO 的生物利用度降低。导致 PVN 中神经元兴奋增加的另一个关键特征是心肌梗死后立即产生的促炎细胞因子、血管紧张素 II 型 1 受体的激活和活性氧的产生。通过检查与交感神经系统途径相关的变化,我们将深入了解心衰中的交感调节,发现我们知识中的空白,并提出新的治疗策略。