Laboratoire de Chimie Physique, UMR8000, Univ. Paris-Sud and CNRS, Orsay, F-91405, France.
J Comput Chem. 2014 Jan 15;35(2):130-49. doi: 10.1002/jcc.23475. Epub 2013 Oct 25.
We present a global strategy for molecular simulation forcefield optimization, using recent advances in Efficient Global Optimization algorithms. During the course of the optimization process, probabilistic kriging metamodels are used, that predict molecular simulation results for a given set of forcefield parameter values. This enables a thorough investigation of parameter space, and a global search for the minimum of a score function by properly integrating relevant uncertainty sources. Additional information about the forcefield parameters are obtained that are inaccessible with standard optimization strategies. In particular, uncertainty on the optimal forcefield parameters can be estimated, and transferred to simulation predictions. This global optimization strategy is benchmarked on the TIP4P water model.
我们提出了一种使用高效全局优化算法进行分子模拟力场优化的全局策略。在优化过程中,使用概率克里金元模型来预测给定的力场参数值集的分子模拟结果。这使得能够彻底研究参数空间,并通过适当整合相关的不确定性源来全局搜索得分函数的最小值。还获得了无法通过标准优化策略获得的有关力场参数的附加信息。特别是,可以估计最优力场参数的不确定性,并将其转移到模拟预测中。该全局优化策略在 TIP4P 水模型上进行了基准测试。