Chi Mingzhe, Gargouri Rihab, Schrader Tim, Damak Kamel, Maâlej Ramzi, Sierka Marek
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
Georesources Materials Environment and Global Changes Laboratory (GEOGLOB), Faculty of Sciences of Sfax, Sfax University, Sfax 3018, Tunisia.
Polymers (Basel). 2021 Dec 22;14(1):26. doi: 10.3390/polym14010026.
Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization ΔHvap of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting ΔHvap of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of ΔHvap of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database.
对代表聚合物重复单元的小分子的原子结构和量子化学计算得出的描述符进行了评估,用于机器学习模型以预测相应聚合物的希尔德布兰德溶解度参数。由于难以获得聚合物可靠的内聚能密度数据和溶解度参数,因此将一组小分子的实验汽化热ΔHvap用作代理属性来评估描述符。使用原子描述符,多线性回归模型在预测小分子集的ΔHvap方面显示出良好的准确性,训练的平均绝对误差为2.63 kJ/mol,交叉验证的平均绝对误差为3.61 kJ/mol。核岭回归在小分子训练集上表现出相似的性能,但在预测代表重复聚合物单元的分子的ΔHvap时准确性略差。从重复聚合物单元的原子描述符得出的聚合物的希尔德布兰德溶解度参数与CROW聚合物数据库中的值显示出良好的相关性。