Department of Botany, Washington State University, 99164-4238, Pullman, WA, USA.
Photosynth Res. 1993 Mar;35(3):265-74. doi: 10.1007/BF00016557.
The light dependence of quantum yields of Photosystem II (ΦII) and of CO2 fixation were determined in C3 and C4 plants under atmospheric conditions where photorespiration was minimal. Calculations were made of the apparent quantum yield for CO2 fixation by dividing the measured rate of photosynthesis by the absorbed light [A/I=ΦCO2 and of the true quantum yield by dividing the estimated true rate of photosynthesis by absorbed light [(A+Rl)/Ia=ΦCO2·], where RL is the rate of respiration in the light. The dependence of the ΦII/ΦCO2 and ΦII/ΦCO2 () ratios on light intensity was then evaluated. In both C3 and C4 plants there was little change in the ratio of ΦII/ΦCO2 at light intensities equivalent to 10-100% of full sunlight, whereas there was a dramatic increase in the ratio at lower light intensities. Changes in the ratio of ΦII/ΦCO2 can occur because respiratory losses are not accounted for, due to changes in the partitioning of energy between photosystems or changes in the relationship between PS II activity and CO2 fixation. The apparent decrease in efficiency of utilization of energy derived from PS II for CO2 fixation under low light intensity may be due to respiratory loss of CO2. Using dark respiration as an estimate of RL, the calculated ΦII/ΦCO2 () ratio was nearly constant from full sunlight down to approx 5% of full sunlight, which suggests a strong linkage between the true rate of CO2 fixation and PS II activity under varying light intensity. Measurements of photosynthesis rates and ΦII were made by illuminating upper versus lower leaf surfaces of representative C3 and C4 monocots and dicots. With the monocots, the rate of photosynthesis and the ratio of ΦII/ΦCO2 exhibited a very similar patterns with leaves illuminated from the adaxial versus the abaxial surface, which may be due to uniformity in anatomy and lack of differences in light acclimation between the two surfaces. With dicots, the abaxial surface had both lower rates of photosynthesis and lower ΦII values than the adaxial surface which may be due to differences in anatomy (spongy versus palisade mesophyll cells) and/or light acclimation between the two surfaces. However, in each species the response of ΦII/ΦCO2 to varying light intensity was similar between the two surfaces, indicating a comparable linkage between PS II activity and CO2 fixation.
在大气条件下,当光呼吸作用最小化时,测定了 C3 和 C4 植物中光系统 II (ΦII) 和 CO2 固定的量子产率对光的依赖性。通过将测量的光合作用速率除以吸收的光 [A/I=ΦCO2],计算了 CO2 固定的表观量子产率,通过将估计的真正光合作用速率除以吸收的光 [(A+Rl)/Ia=ΦCO2·],其中 Rl 是光下的呼吸速率。然后评估了 ΦII/ΦCO2 和 ΦII/ΦCO2() 比值随光强度的变化。在 C3 和 C4 植物中,在相当于 10-100%全日照强度的光强度下,ΦII/ΦCO2 比值变化不大,而在较低光强度下,比值急剧增加。ΦII/ΦCO2 比值的变化可能是由于呼吸损失未被考虑,这是由于光合系统之间能量分配的变化或 PS II 活性与 CO2 固定之间关系的变化。在低光强度下,从 PS II 获得的能量用于 CO2 固定的效率似乎降低,这可能是由于 CO2 的呼吸损失。使用暗呼吸作为 Rl 的估计值,计算出的 ΦII/ΦCO2()比值从全日照强度到约 5%全日照强度几乎保持不变,这表明在不同光强度下,真正的 CO2 固定率与 PS II 活性之间存在很强的联系。通过照射上叶表面和代表 C3 和 C4 单子叶植物和双子叶植物的下叶表面,测量光合作用速率和 ΦII。对于单子叶植物,光合作用速率和 ΦII/ΦCO2 的比值与从叶的腹面与背面照明的叶片具有非常相似的模式,这可能是由于两个表面的解剖结构均匀且缺乏光适应差异所致。对于双子叶植物,背面的光合作用速率和 ΦII 值均低于正面,这可能是由于解剖结构的差异(海绵状与栅栏状叶肉细胞)和/或两个表面之间的光适应差异所致。然而,在每种植物中,两个表面之间的 ΦII/ΦCO2 对不同光强度的响应是相似的,这表明 PS II 活性与 CO2 固定之间存在可比的联系。