Tallini Yvonne Norine, Greene Kai Su, Shui Bo, Russell Calum William, Lee Jane Constance, Doran Robert Michael, Nakai Junichi, Kotlikoff Michael I
Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
Methods Mol Biol. 2014;1092:195-219. doi: 10.1007/978-1-60327-292-6_13.
Supraventricular tachycardias are the most prevalent group of arrhythmias observed in the fetus and infant and their incidence increases through early childhood. The molecular pathogenesis of embryonic cardiac dysfunction is poorly understood, due in part to the absence of imaging techniques that provide functional information at the cellular and molecular levels in the developing mammalian heart, particularly during early heart formation. The combination of protein engineering, genetic specification, and high-resolution optical imaging enables new insights into cardiac function and dysfunction during cardiac development. Here we describe the use of GCaMP2, a genetically encoded Ca(2+) indicator (GECI), to determine the processes of cardiac electrical activation during cardiac organogenesis. Transgenic specification of GCaMP2 in mice allows sufficient expression for Ca(2+) imaging as early as embryonic day (e.d.) 9.5, just after the heart begins to function at e.d. 8.5. Crosses with knockout lines in which lethality occurs due to cardiac dysfunction will enable precise determination of the conduction or excitation-contraction coupling phenotypes and thereby improve the understanding of the genetic basis of heart development and the consequence of gene mutations. Moreover, lineage-specific targeting of these sensors of cell signaling provides a new window on the molecular specification of the heart conduction system. We describe mouse lines and imaging methods used to examine conduction in the pre-septated heart (e.d. 10.5), which occurs through dramatically slowed atrioventricular (AV) canal conduction, producing a delay between atrial and ventricular activation prior to the development of the AV node. Genetic constructs including single and bi-allelic minimal promoter systems, and single allele BAC transgenes, enable general or lineage-specific targeting of GCaMP2. High-resolution imaging of embryonic heart conduction provides a new window on one of the most complex events in the mammalian body plan.
室上性心动过速是胎儿和婴儿中最常见的心律失常类型,其发病率在幼儿期会增加。胚胎心脏功能障碍的分子发病机制尚不清楚,部分原因是缺乏能够在发育中的哺乳动物心脏,特别是在心脏早期形成过程中,提供细胞和分子水平功能信息的成像技术。蛋白质工程、基因特异性和高分辨率光学成像的结合,使我们能够对心脏发育过程中的心脏功能和功能障碍有新的认识。在这里,我们描述了使用GCaMP2(一种基因编码的Ca²⁺指示剂,GECI)来确定心脏器官发生过程中心脏电激活的过程。在小鼠中对GCaMP2进行转基因特异性表达,早在胚胎第9.5天(e.d.),即心脏在e.d.8.5开始发挥功能后不久,就足以进行Ca²⁺成像。与因心脏功能障碍而致死的基因敲除品系杂交,将能够精确确定传导或兴奋 - 收缩偶联表型,从而增进对心脏发育遗传基础和基因突变后果的理解。此外,这些细胞信号传感器的谱系特异性靶向为心脏传导系统的分子特异性提供了一个新窗口。我们描述了用于检查分隔前心脏(e.d.10.5)传导的小鼠品系和成像方法,该传导通过房室(AV)通道传导显著减慢而发生,在房室结发育之前,在心房和心室激活之间产生延迟。包括单等位基因和双等位基因最小启动子系统以及单等位基因BAC转基因在内的基因构建体,能够实现GCaMP2的一般或谱系特异性靶向。胚胎心脏传导的高分辨率成像为哺乳动物身体计划中最复杂的事件之一提供了一个新窗口。