Department of Biomedical Engineering, George Washington University, Washington, DC, USA.
Nat Rev Cardiol. 2021 May;18(5):349-367. doi: 10.1038/s41569-020-00478-0. Epub 2020 Dec 18.
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
心脏的机电功能涉及时间和空间上的复杂协调活动。危及生命的心律失常源于这些时空事件的不同步;因此,预防和治疗的疗法需要对心脏活动进行基本的理解和可视化、干扰和控制的能力。光遗传学将光学和分子生物学(遗传)方法结合在一起,用于实现电活动的光感应和驱动,具有前所未有的时空分辨率和并行性。自这项技术从神经科学中被采用并应用于心脏以来,2020 年标志着心脏光遗传学发展的十年。在这篇综述中,我们评估了过去十年的进展,这些进展基于全光学电生理学定义了近期(立即)的转化,包括高通量筛选、心脏毒性测试和个性化医学检测,以及心脏光遗传学的长期(理想)的临床转化前景,包括用于节律控制的新光学疗法。还讨论了光遗传学在心脏病学中被完全接受的主要转化机会和挑战。