Joglekar Ajit, Chen Renjie, Lawrimore Joshua
Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl, 3067 BSRB, Ann Arbor, MI 48109 USA.
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.
Cell Mol Bioeng. 2013;6(4):369-382. doi: 10.1007/s12195-013-0290-y. Epub 2013 Jul 11.
Macromolecular machines participate in almost every cell biological function. These machines can take the form of well-defined protein structures such as the kinetochore, or more loosely organized protein assemblies like the endocytic coat. The protein architecture of these machines-the arrangement of multiple copies of protein subunits at the nanoscale, is necessary for understanding their cell biological function and biophysical mechanism. Defining this architecture presents a major challenge. High density of protein molecules within macromolecular machines severely limits the effectiveness of super-resolution microscopy. However, this density is ideal for Forster Resonance Energy Transfer (FRET), which can determine the proximity between neighboring molecules. Here, we present a simple FRET quantitation scheme that calibrates a standard epifluorescence microscope for measuring donor-acceptor separations. This calibration can be used to deduce FRET efficiency fluorescence intensity measurements. This method will allow accurate determination of FRET efficiency over a wide range of values and FRET pair number. It will also allow dynamic FRET measurements with high spatiotemporal resolution under cell biological conditions. Although the poor maturation efficiency of genetically encoded fluorescent proteins presents a challenge, we show that its effects can be alleviated. To demonstrate this methodology, we probe the architecture of the γ-Tubulin Ring. Our technique can be applied to study the architecture and dynamics of a wide range of macromolecular machines.
大分子机器几乎参与了细胞生物学的每一项功能。这些机器可以采取定义明确的蛋白质结构形式,如动粒,或者更松散组织的蛋白质组装体,如内吞小泡衣被。这些机器的蛋白质结构——蛋白质亚基在纳米尺度上的多拷贝排列,对于理解它们的细胞生物学功能和生物物理机制是必要的。定义这种结构是一项重大挑战。大分子机器内蛋白质分子的高密度严重限制了超分辨率显微镜的有效性。然而,这种密度对于福斯特共振能量转移(FRET)来说是理想的,FRET可以确定相邻分子之间的距离。在这里,我们提出了一种简单的FRET定量方案,该方案校准标准落射荧光显微镜以测量供体-受体间距。这种校准可用于推导FRET效率荧光强度测量值。该方法将允许在很宽的值范围和FRET对数量下准确测定FRET效率。它还将允许在细胞生物学条件下以高时空分辨率进行动态FRET测量。尽管基因编码荧光蛋白的成熟效率低带来了挑战,但我们表明其影响可以得到缓解。为了证明这种方法,我们探测了γ-微管蛋白环的结构。我们的技术可应用于研究广泛的大分子机器的结构和动力学。