Suppr超能文献

磁共振兼容旋转阳极 X 射线管的稳定运行设计优化。

Design optimization of MR-compatible rotating anode x-ray tubes for stable operation.

机构信息

Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305.

出版信息

Med Phys. 2013 Nov;40(11):111913. doi: 10.1118/1.4824325.

Abstract

PURPOSE

Hybrid x-ray/MR systems can enhance the diagnosis and treatment of endovascular, cardiac, and neurologic disorders by using the complementary advantages of both modalities for image guidance during interventional procedures. Conventional rotating anode x-ray tubes fail near an MR imaging system, since MR fringe fields create eddy currents in the metal rotor which cause a reduction in the rotation speed of the x-ray tube motor. A new x-ray tube motor prototype has been designed and built to be operated close to a magnet. To ensure the stability and safety of the motor operation, dynamic characteristics must be analyzed to identify possible modes of mechanical failure. In this study a 3D finite element method (FEM) model was developed in order to explore possible modifications, and to optimize the motor design. The FEM provides a valuable tool that permits testing and evaluation using numerical simulation instead of building multiple prototypes.

METHODS

Two experimental approaches were used to measure resonance characteristics: the first obtained the angular speed curves of the x-ray tube motor employing an angle encoder; the second measured the power spectrum using a spectrum analyzer, in which the large amplitude of peaks indicates large vibrations. An estimate of the bearing stiffness is required to generate an accurate FEM model of motor operation. This stiffness depends on both the bearing geometry and adjacent structures (e.g., the number of balls, clearances, preload, etc.) in an assembly, and is therefore unknown. This parameter was set by matching the FEM results to measurements carried out with the anode attached to the motor, and verified by comparing FEM predictions and measurements with the anode removed. The validated FEM model was then used to sweep through design parameters [bearing stiffness (1 × 10(5)-5 × 10(7) N/m), shaft diameter (0.372-0.625 in.), rotor diameter (2.4-2.9 in.), and total length of motor (5.66-7.36 in.)] to increase the fundamental frequency past the operating range at 50 Hz.

RESULTS

The first large vibration during the prototype motor operation was obtained at 21.64 ± 0.68 Hz in the power spectrum. An abrupt decrease in acceleration occurred at 21.5 Hz due to struggling against the resonance vibrations. A bearing stiffness of 1.2 × 10(5) N/m in the FEM simulation was used to obtain a critical speed of 21.4 Hz providing 1.1% error. This bearing stiffness value and the 3D model were then confirmed by the experiments with the anode removed, demonstrating an agreement within 6.4% between simulation results and measurements. A calculated first critical frequency (fundamental frequency) of 68.5 Hz was obtained by increasing the bearing stiffness to 1 × 10(7) N/m and increasing the shaft diameter by 68.0%. Reducing the number of bearings in the design permits decreasing the total length of the motor by 1.7 in., and results in a fundamental frequency of 68.3 Hz in concert with additional changes (shaft diameter of 0.625 in., rotor diameter of 2.4 in., and bearing stiffness of 1 × 10(6) N/m).

CONCLUSIONS

An FEM model of the x-ray tube motor has been implemented and experimentally validated. A fundamental frequency above the operational rotation speed can be achieved through modification of multiple design parameters, which allows the motor to operate stably and safely in the MR environment during the repeated acceleration/deceleration cycles required for an interventional procedure. The validated 3D FEM model can now be used to investigate trade-offs between generated torque, maximum speed, and motor inertia to further optimize motor design.

摘要

目的

混合 X 射线/MR 系统可以利用两种模式的互补优势,在介入手术过程中进行图像引导,从而增强对血管内、心脏和神经疾病的诊断和治疗。传统的旋转阳极 X 射线管在靠近磁共振成像系统时会失效,因为磁共振边缘场会在金属转子中产生涡流,导致 X 射线管电机的转速降低。已经设计并制造了一种新的 X 射线管电机原型,以便在靠近磁铁的情况下运行。为了确保电机运行的稳定性和安全性,必须分析动态特性,以确定可能的机械故障模式。在这项研究中,开发了一个三维有限元(FE)模型,以便探索可能的改进,并优化电机设计。FE 提供了一个有价值的工具,可以使用数值模拟进行测试和评估,而无需构建多个原型。

方法

采用两种实验方法测量共振特性:第一种方法使用角度编码器获得 X 射线管电机的角速度曲线;第二种方法使用频谱分析仪测量功率谱,其中峰值的大振幅表示大振动。生成准确的电机运行 FE 模型需要估计轴承刚度。该刚度取决于轴承的几何形状和相邻结构(例如,球的数量、间隙、预紧力等)在装配中的组合,因此是未知的。该参数通过将 FE 结果与附着在电机上的阳极进行测量相匹配来设置,并通过比较带有和不带有阳极的 FE 预测和测量来验证。然后,使用验证的 FE 模型通过扫过设计参数[轴承刚度(1×10(5)-5×10(7)N/m)、轴直径(0.372-0.625 英寸)、转子直径(2.4-2.9 英寸)和电机总长度(5.66-7.36 英寸)]来增加基本频率超过 50Hz 的工作范围。

结果

原型电机运行过程中的第一次大振动在功率谱中以 21.64±0.68Hz 获得。由于与共振振动作斗争,加速度在 21.5Hz 时突然下降。在 FE 模拟中使用 1.2×10(5)N/m 的轴承刚度可获得 21.4Hz 的临界速度,误差为 1.1%。该轴承刚度值和 3D 模型随后通过去除阳极的实验得到了确认,模拟结果和测量结果之间的一致性在 6.4%以内。通过将轴承刚度增加到 1×10(7)N/m 并将轴直径增加 68.0%,计算出第一个临界频率(基频)为 68.5Hz。减少设计中的轴承数量可使电机总长度缩短 1.7 英寸,并产生 68.3Hz 的基频,同时还伴随着其他变化(轴直径为 0.625 英寸,转子直径为 2.4 英寸,轴承刚度为 1×10(6)N/m)。

结论

已经实现并实验验证了 X 射线管电机的 FE 模型。通过修改多个设计参数,可以实现高于工作转速的基频,从而允许电机在介入手术过程中所需的反复加速/减速循环期间在磁共振环境中稳定和安全地运行。现在可以使用经过验证的 3D FE 模型来研究产生的扭矩、最大速度和电机惯量之间的权衡,以进一步优化电机设计。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验