Suppr超能文献

用于在强磁场中运行的X射线管的静电焦点校正。

Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields.

作者信息

Lillaney Prasheel, Shin Mihye, Hinshaw Waldo, Fahrig Rebecca

机构信息

Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107.

Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305.

出版信息

Med Phys. 2014 Nov;41(11):112302. doi: 10.1118/1.4898099.

Abstract

PURPOSE

A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories.

METHODS

The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum.

RESULTS

An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and -20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%.

CONCLUSIONS

The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes.

摘要

目的

与当前成像视野之间具有较大间隔距离(约5米)的XMR系统装置相比,近距离混合式X射线/磁共振(XMR)成像系统具有若干关键优势。如果能够将X射线管设计成不受磁共振(MR)孔腔外部边缘磁场的影响,那么这两种成像系统就可以彼此近距离放置。坚固的X射线管设计的主要障碍之一是校正MR边缘磁场对X射线管焦点的影响。任何与X射线管电场正交的边缘磁场分量都会导致电子漂移,从而改变电子轨迹的路径。

方法

本研究中提出的校正电子漂移的方法利用沿漂移方向的外部电场。该电场由位于阴极附近的两个电极产生。这些电极相对于阴极被施加正电势差和负电势差。聚焦杯组件的设计主要受MR边缘磁场强度以及阳极、阴极和偏置电极之间的高电压隔离距离的限制。基于这些限制条件,推导出一种适用于近距离XMR系统几何结构的聚焦杯设计,并对该聚焦杯几何结构的有限元模型进行模拟以证明其有效性。进行蒙特卡罗模拟以确定改进后的聚焦杯设计对输出X射线能谱的任何影响。

结果

使用+15 kV和 -20 kV的偏置电压可以补偿65 mT的正交边缘磁场强度。这些偏置电压不足以完全校正更大的正交磁场强度。将有源屏蔽线圈与偏置电极结合使用可在正交磁场强度为88.1 mT时提供完全校正。除了正交磁场之外,引入与X射线管电场平行的小磁场(<10 mT)不会影响静电校正技术。然而,将X射线管向MR孔腔方向旋转30°会增加平行磁场强度(约72 mT)。这种较大的平行磁场与正交磁场同时存在会导致校正不完全。蒙特卡罗模拟表明,X射线能谱的平均能量不受静电校正的明显影响,但输出通量降低了7.5%。

结论

使用所提出的设计能够补偿的最大正交磁场强度为65 mT。由于纯静电方法受X射线管插入件内部真空的介电强度限制,更大的正交磁场强度无法得到完全补偿。当在正交和平行方向都存在强磁场时,静电方法也存在局限性,因为电子倾向于与平行磁场保持对齐。通过使用同时利用有源屏蔽线圈和偏置电极的混合校正方法,可以解决这些具有挑战性的磁场条件问题。

相似文献

4
WE-C-217BCD-02: Design of an MR Compatible Rotating Anode X-Ray Tube.
Med Phys. 2012 Jun;39(6Part27):3949. doi: 10.1118/1.4736118.
7
8
Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac.
Med Phys. 2010 Sep;37(9):4916-23. doi: 10.1118/1.3481513.
9
Design optimization of MR-compatible rotating anode x-ray tubes for stable operation.
Med Phys. 2013 Nov;40(11):111913. doi: 10.1118/1.4824325.
10
A novel electron gun for inline MRI-linac configurations.
Med Phys. 2014 Feb;41(2):022301. doi: 10.1118/1.4860660.

本文引用的文献

8
Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/ MR system.
Med Phys. 2008 Sep;35(9):3895-902. doi: 10.1118/1.2963994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验