Suppr超能文献

基于群组稀疏的肺部 4D-CT 分辨率增强。

Resolution enhancement of lung 4D-CT via group-sparsity.

机构信息

Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599.

出版信息

Med Phys. 2013 Dec;40(12):121717. doi: 10.1118/1.4829501.

Abstract

PURPOSE

4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.

METHODS

In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors' approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors' approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.

RESULTS

The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, "A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets," Phys. Med. Biol. 54, 1849-1870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as quantitatively, the ability of their approach to achieve more accurate and better localized results over bicubic interpolation as well as a related state-of-the-art approach. The authors also show results on some datasets with tumor, to further emphasize the clinical importance of their method.

CONCLUSIONS

The authors have proposed to improve the superior-inferior resolution of 4D-CT by estimating intermediate slices. The authors' approach exploits neighboring constraints in the group-sparsity framework, toward the goal of achieving better localization and noise robustness. The authors' results are encouraging, and positively demonstrate the role of group-sparsity for 4D-CT resolution enhancement.

摘要

目的

4D-CT 通常比 3D-CT 能提供更准确的肺部解剖结构信息,因为它能够捕捉到不同呼吸相之间的肺部运动的视觉信息。这有助于更好地确定肺癌放射治疗期间的剂量。然而,4D-CT 的一个关键问题是,由于获取的切片数量较少,从而控制 CT 辐射剂量,导致其上下分辨率较低,这极大地削弱了这一优势。为了解决这一限制,作者提出了一种重建缺失中间切片的方法,以提高上下分辨率。

方法

在该方法中,作者利用了这样一种观察结果,即在 4D-CT 中,由于肺部运动,跨呼吸相的采样信息可以互补。作者的方法使用基于补丁的稀疏表示框架,在跨相位的局部互补信息。此外,与一些最近的独立处理局部补丁的方法不同,作者的方法采用了群组稀疏性框架,该框架在补丁之间施加了邻域和相似性约束。这有助于缓解噪声稳健性和结构保持之间的权衡,这在分辨率增强中是一个重要的考虑因素。作者讨论了群组稀疏性的正则化能力,这有助于降低噪声的影响,并实现更好的结构定位和增强。

结果

作者在公开的 DIR-Lab 肺部 4D-CT 数据集[R.Castillo、E.Castillo、R.Guerra、V.Johnson、T.McPhail、A.Garg 和 T.Guerrero,“使用大型地标点集评估变形图像配准空间准确性的框架”,物理医学与生物学,第 54 卷,第 1849-1870 页(2009 年)]上进行了广泛的实验。首先,作者对方法中的一些重要参数进行了经验参数分析。然后,作者从定性和定量两个方面,证明了他们的方法能够比双三次插值以及相关的最先进的方法实现更准确和更好的局部化结果。作者还展示了一些带有肿瘤的数据集的结果,以进一步强调他们的方法的临床重要性。

结论

作者提出了通过估计中间切片来提高 4D-CT 的上下分辨率。作者的方法利用了群组稀疏性框架中的邻域约束,以实现更好的定位和噪声稳健性。作者的结果令人鼓舞,积极证明了群组稀疏性在 4D-CT 分辨率增强中的作用。

相似文献

2
Harnessing group-sparsity regularization for resolution enhancement of lung 4D-CT.利用组稀疏正则化提高肺部4D-CT分辨率
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):139-46. doi: 10.1007/978-3-642-40760-4_18.

引用本文的文献

3
Dual-Domain Cascaded Regression for Synthesizing 7T from 3T MRI.用于从3T磁共振成像合成7T的双域级联回归
Med Image Comput Comput Assist Interv. 2018 Sep;11070:410-417. doi: 10.1007/978-3-030-00928-1_47. Epub 2018 Sep 26.
4
7T-guided super-resolution of 3T MRI.7T 引导下的 3T MRI 超分辨率
Med Phys. 2017 May;44(5):1661-1677. doi: 10.1002/mp.12132. Epub 2017 Apr 22.
5
Reconstruction of 7T-Like Images From 3T MRI.从3T磁共振成像重建类似7T的图像。
IEEE Trans Med Imaging. 2016 Sep;35(9):2085-97. doi: 10.1109/TMI.2016.2549918. Epub 2016 Apr 1.

本文引用的文献

1
Non-local means resolution enhancement of lung 4D-CT data.肺部4D-CT数据的非局部均值分辨率增强
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):214-22. doi: 10.1007/978-3-642-33415-3_27.
5
Visual classification with multitask joint sparse representation.基于多任务联合稀疏表示的视觉分类。
IEEE Trans Image Process. 2012 Oct;21(10):4349-60. doi: 10.1109/TIP.2012.2205006. Epub 2012 Jun 18.
7
Adaptive radiation for lung cancer.肺癌的适应性辐射。
J Oncol. 2011;2011. doi: 10.1155/2011/898391. Epub 2010 Aug 4.
8
Image super-resolution via sparse representation.基于稀疏表示的图像超分辨率重建。
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.
9
4D CT sorting based on patient internal anatomy.基于患者内部解剖结构的4D CT分类
Phys Med Biol. 2009 Aug 7;54(15):4821-33. doi: 10.1088/0031-9155/54/15/012. Epub 2009 Jul 22.
10
Super-resolution without explicit subpixel motion estimation.无需显式子像素运动估计的超分辨率技术。
IEEE Trans Image Process. 2009 Sep;18(9):1958-75. doi: 10.1109/TIP.2009.2023703. Epub 2009 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验