Suppr超能文献

颈动脉多光谱磁共振血管壁图像的自动配准。

Automated registration of multispectral MR vessel wall images of the carotid artery.

机构信息

Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.

出版信息

Med Phys. 2013 Dec;40(12):121904. doi: 10.1118/1.4829503.

Abstract

PURPOSE

Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction.

METHODS

MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA∕stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and moving image after registration.

RESULTS

The average required manual translation per image slice was 1.33 mm. Translations were larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask in the fixed image, the remaining sequences are automatically registered with a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual alignment procedure. The exact registration parameters and software were made publicly available.

CONCLUSIONS

An automated registration method was developed and optimized, only needing two mouse clicks to mark the start and end point of the artery. Validation on a large group of patients showed that automated image registration has similar accuracy as the manual alignment procedure, substantially reducing the amount of user interactions needed, and is multiple times faster. In conclusion, the authors believe that the proposed automated method can replace the current manual procedure, thereby reducing the time to analyze the images.

摘要

目的

动脉粥样硬化是心脏病和中风的主要原因。颈动脉粥样硬化的详细评估需要使用具有不同对比权重的多种磁共振(MR)序列对血管壁进行高分辨率成像。这些图像允许对血管壁内的斑块成分进行手动或自动分类。自动分类需要所有序列对齐,但这受到患者运动的阻碍。在临床实践中,通过手动进行运动校正。以前的研究仅使用不可变形变换模型应用自动图像配准来校正运动,并且没有进行详细的定量验证。本研究的目的是开发一种自动准确的 3D 配准方法,并在大量患者数据上对该方法进行广泛验证。此外,作者还量化了扫描过程中的患者运动,以研究是否需要校正。

方法

从较大的队列中随机选择 55 例同侧<70%颈动脉狭窄的 TIA/中风患者的 MR 成像研究(1.5T,专用颈动脉表面线圈,Philips)。在颈动脉分叉周围采集了五个 MR 脉冲序列,每个序列包含九个横切面:T1 加权涡轮场回波、飞行时间、T2 加权涡轮自旋回波、以及预对比和对比后 T1 加权涡轮自旋回波图像(T1W TSE)。通过描绘每个血管壁序列中的管腔轮廓对图像进行手动分割,并通过对图像应用平面内和平面外平移来手动对齐图像。为了找到最佳的自动图像配准方法,评估了不同的掩模、固定图像的选择、互信息图像相似性度量的不同类型,以及包括 3D 可变形变换模型在内的变换模型。通过比较注册后固定图像和移动图像的管腔分割来评估自动注册结果。

结果

每个图像切片的平均手动平移量为 1.33 毫米。随着患者在扫描仪内的长度增加,平移量会更大。手动对准每个患者需要 187.5 秒,导致平均表面距离为 0.271±0.127 毫米。在对固定图像中的蒙版进行最小量的用户交互以生成蒙版后,其余序列可以自动注册,每个患者的计算时间为 52.0 秒。最佳注册策略使用直径为 10 毫米的圆形蒙版、控制点间距为 15 毫米的 3D B-样条变换模型、互信息作为图像相似性度量以及预对比 T1W TSE 作为固定图像。使用这些设置可获得 0.288±0.128 毫米的平均表面距离,这非常接近手动对准过程的精度。精确的注册参数和软件已公开提供。

结论

开发并优化了一种自动配准方法,仅需两次鼠标点击即可标记动脉的起点和终点。对大量患者的验证表明,自动图像配准与手动对准过程具有相似的准确性,大大减少了所需的用户交互量,并且速度快了数倍。总之,作者认为所提出的自动方法可以替代当前的手动程序,从而减少分析图像的时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验