Suppr超能文献

基于学习的颈动脉血管壁在双序列 MRI 中的自动分割,采用细分曲面拟合。

Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting.

机构信息

Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.

Department of Radiology, Academic Medical Center, 1100 DD, Amsterdam, The Netherlands.

出版信息

Med Phys. 2017 Oct;44(10):5244-5259. doi: 10.1002/mp.12476. Epub 2017 Aug 30.

Abstract

PURPOSE

The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI.

METHODS

The proposed method segments the lumen and outer wall surfaces including the bifurcation region by fitting a subdivision surface constructed hierarchical-tree model to the image data. In particular, a hybrid segmentation which combines deformable model fitting with boundary classification was applied to extract the lumen surface. The 3D model ensures the correct shape and topology of the carotid artery, while the boundary classification uses combined image information of 3D TOF-MRA and 3D BB-MRI to promote accurate delineation of the lumen boundaries. The proposed algorithm was validated on 25 subjects (48 arteries) including both healthy volunteers and atherosclerotic patients with 30% to 70% carotid stenosis.

RESULTS

For both lumen and outer wall border detection, our result shows good agreement between manually and automatically determined contours, with contour-to-contour distance less than 1 pixel as well as Dice overlap greater than 0.87 at all different carotid artery sections.

CONCLUSIONS

The presented 3D segmentation technique has demonstrated the capability of providing vessel wall delineation for 3D carotid MRI data with high accuracy and limited user interaction. This brings benefits to large-scale patient studies for assessing the effect of pharmacological treatment of atherosclerosis by reducing image analysis time and bias between human observers.

摘要

目的

血管壁形态和斑块负担的量化需要血管分割,通常通过手动描绘来完成。我们的工作目的是开发并评估一种新的基于 3D 模型的方法,用于从双序列 MRI 中分割颈动脉壁。

方法

所提出的方法通过将细分曲面构造的层次树模型拟合到图像数据上来分割管腔和外壁表面,包括分叉区域。特别是,采用了一种结合变形模型拟合和边界分类的混合分割方法来提取管腔表面。3D 模型确保了颈动脉的正确形状和拓扑结构,而边界分类则使用 3D TOF-MRA 和 3D BB-MRI 的组合图像信息来促进管腔边界的准确描绘。该算法在包括健康志愿者和颈动脉狭窄 30%至 70%的动脉粥样硬化患者在内的 25 名受试者(48 条动脉)上进行了验证。

结果

对于管腔和外壁边界检测,我们的结果显示手动和自动确定的轮廓之间具有良好的一致性,在所有不同的颈动脉节段,轮廓到轮廓的距离小于 1 个像素,Dice 重叠大于 0.87。

结论

所提出的 3D 分割技术已经证明了为 3D 颈动脉 MRI 数据提供血管壁描绘的能力,具有很高的准确性和有限的用户交互。这通过减少图像分析时间和人类观察者之间的偏差,为评估动脉粥样硬化药物治疗效果的大规模患者研究带来了益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验