Suppr超能文献

使用亚毫米级平衡稳态自由进动采集进行高空间分辨率脑功能磁共振成像。

High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition.

机构信息

Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.

出版信息

Med Phys. 2013 Dec;40(12):122304. doi: 10.1118/1.4828789.

Abstract

PURPOSE

One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm(3) achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm(3) voxel volume at 3.0 T.

METHODS

In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outer k-space data components.

RESULTS

Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm(3) to 0.43 × 0.43 × 2 mm(3) has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution.

CONCLUSIONS

It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

摘要

目的

功能磁共振成像(fMRI)的技术优势之一在于其能够精确定位神经元活动引起的变化。虽然目前在体素大小约为 3×3×3mm(3)的情况下进行 fMRI 采集,在研究基本脑功能方面已取得令人满意的结果,但为了分辨更精细的皮质结构,需要更高的空间分辨率。本研究使用体素体积为 0.37mm(3)的 3.0T 平衡稳态自由进动(bSSFP)成像,探讨了空间分辨率对脑 fMRI 实验的影响。

方法

在 fMRI 实验中,对健康受试者进行全视野和单侧视野 5Hz 闪烁棋盘刺激。bSSFP 成像实验在三个不同的频率偏移下进行,以扩大覆盖范围,使用广义线性模型分析初级视觉皮层的功能激活。通过去除外 k 空间数据分量来实现空间分辨率的变化。

结果

结果表明,体素体积从 3.44×3.44×2mm(3)减小到 0.43×0.43×2mm(3),尽管原始图像的信噪比降低了三倍,在 3.0T 下,功能激活信号从(7.7±1.7)%增加到(20.9±2.0)%,导致功能对比噪声比(fCNR)几乎不变,即使在高空间分辨率下也是如此。在高空间分辨率下,与灰质脑沟对齐的激活信号可能会被误认为是低空间分辨率下的噪声。

结论

bSSFP 序列是一种在亚毫米体素宽度下进行 fMRI 研究的可行技术,不会影响 fCNR。保留 fCNR 的非激活脑组织的部分容积平均的减少,特别适合高空间分辨率的应用,如大脑中柱状组织的分辨。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验