Suppr超能文献

皮层内平滑小体素 fMRI 数据可以比常规大体素 fMRI 数据提供更高的检测能力,而不会损失空间分辨率。

Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Neuroimage. 2019 Apr 1;189:601-614. doi: 10.1016/j.neuroimage.2019.01.054. Epub 2019 Jan 25.

Abstract

Continued improvement in MRI acquisition technology has made functional MRI (fMRI) with small isotropic voxel sizes down to 1 mm and below more commonly available. Although many conventional fMRI studies seek to investigate regional patterns of cortical activation for which conventional voxel sizes of 3 mm and larger provide sufficient spatial resolution, smaller voxels can help avoid contamination from adjacent white matter (WM) and cerebrospinal fluid (CSF), and thereby increase the specificity of fMRI to signal changes within the gray matter. Unfortunately, temporal signal-to-noise ratio (tSNR), a metric of fMRI sensitivity, is reduced in high-resolution acquisitions, which offsets the benefits of small voxels. Here we introduce a framework that combines small, isotropic fMRI voxels acquired at 7 T field strength with a novel anatomically-informed, surface mesh-navigated spatial smoothing that can provide both higher detection power and higher resolution than conventional voxel sizes. Our smoothing approach uses a family of intracortical surface meshes and allows for kernels of various shapes and sizes, including curved 3D kernels that adapt to and track the cortical folding pattern. Our goal is to restrict smoothing to the cortical gray matter ribbon and avoid noise contamination from CSF and signal dilution from WM via partial volume effects. We found that the intracortical kernel that maximizes tSNR does not maximize percent signal change (ΔS/S), and therefore the kernel configuration that optimizes detection power cannot be determined from tSNR considerations alone. However, several kernel configurations provided a favorable balance between boosting tSNR and ΔS/S, and allowed a 1.1-mm isotropic fMRI acquisition to have higher performance after smoothing (in terms of both detection power and spatial resolution) compared to an unsmoothed 3.0-mm isotropic fMRI acquisition. Overall, the results of this study support the strategy of acquiring voxels smaller than the cortical thickness, even for studies not requiring high spatial resolution, and smoothing them down within the cortical ribbon with a kernel of an appropriate shape to achieve the best performance-thus decoupling the choice of fMRI voxel size from the spatial resolution requirements of the particular study. The improvement of this new intracortical smoothing approach over conventional surface-based smoothing is expected to be modest for conventional resolutions, however the improvement is expected to increase with higher resolutions. This framework can also be applied to anatomically-informed intracortical smoothing of higher-resolution data (e.g. along columns and layers) in studies with prior information about the spatial structure of activation.

摘要

MRI 采集技术的持续改进使得具有小各向同性体素大小(低至 1mm 及以下)的功能磁共振成像(fMRI)更为常见。尽管许多传统的 fMRI 研究旨在探索皮质激活的区域模式,而传统的 3mm 及更大的体素大小提供了足够的空间分辨率,但较小的体素可以帮助避免来自相邻的白质(WM)和脑脊液(CSF)的污染,从而提高 fMRI 对灰质内信号变化的特异性。不幸的是,功能磁共振成像灵敏度的指标——时间信号噪声比(tSNR)在高分辨率采集时降低,这抵消了小体素的好处。在这里,我们介绍了一种将在 7T 场强下采集的小各向同性 fMRI 体素与新颖的解剖学信息相结合的框架,这种框架可以提供比传统体素尺寸更高的检测能力和更高的分辨率。我们的平滑方法使用了一系列皮质内表面网格,并允许使用各种形状和大小的核,包括适应并跟踪皮质折叠模式的弯曲 3D 核。我们的目标是将平滑限制在皮质灰质带内,并通过部分容积效应避免 CSF 的噪声污染和 WM 的信号稀释。我们发现,最大化 tSNR 的皮质内核并不最大化信号变化百分比(ΔS/S),因此,不能仅从 tSNR 考虑来确定优化检测能力的核配置。然而,几种核配置在提高 tSNR 和ΔS/S 之间提供了有利的平衡,并允许对经过平滑的 1.1mm 各向同性 fMRI 采集进行比未平滑的 3.0mm 各向同性 fMRI 采集更高的性能(在检测能力和空间分辨率方面)。总的来说,这项研究的结果支持了采集小于皮质厚度的体素的策略,即使对于不需要高空间分辨率的研究也是如此,并使用适当形状的核在皮质带内将它们平滑化,以实现最佳性能——从而将 fMRI 体素大小的选择与特定研究的空间分辨率要求解耦。与传统的基于表面的平滑相比,这种新的皮质内平滑方法的改进预计在传统分辨率下是适度的,但是随着分辨率的提高,这种改进预计会增加。该框架还可以应用于具有激活空间结构先验信息的更高分辨率数据(例如,沿柱和层)的解剖学信息指导的皮质内平滑。

相似文献

10

引用本文的文献

本文引用的文献

8
Analysis strategies for high-resolution UHF-fMRI data.高分辨率 UHF-fMRI 数据的分析策略。
Neuroimage. 2018 Mar;168:296-320. doi: 10.1016/j.neuroimage.2017.04.053. Epub 2017 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验