Eberlein Tim, Van de Waal Dedmer B, Rost Björn
Department of Marine Biogeoscience, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
Physiol Plant. 2014 Aug;151(4):468-79. doi: 10.1111/ppl.12137. Epub 2014 Jan 24.
Dinoflagellates represent a cosmopolitan group of phytoplankton with the ability to form harmful algal blooms. Featuring a Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) with very low CO2 affinities, photosynthesis of this group may be particularly prone to carbon limitation and thus benefit from rising atmospheric CO2 partial pressure (pCO2) under ocean acidification (OA). Here, we investigated the consequences of OA on two bloom-forming dinoflagellate species, the calcareous Scrippsiella trochoidea and the toxic Alexandrium tamarense. Using dilute batch incubations, we assessed growth characteristics over a range of pCO2 (i.e. 180-1200 µatm). To understand the underlying physiology, several aspects of inorganic carbon acquisition were investigated by membrane-inlet mass spectrometry. Our results show that both species kept growth rates constant over the tested pCO2 range, but we observed a number of species-specific responses. For instance, biomass production and cell size decreased in S. trochoidea, while A. tamarense was not responsive to OA in these measures. In terms of oxygen fluxes, rates of photosynthesis and respiration remained unaltered in S. trochoidea whereas respiration increased in A. tamarense under OA. Both species featured efficient carbon concentrating mechanisms (CCMs) with a CO2-dependent contribution of HCO3(-) uptake. In S. trochoidea, the CCM was further facilitated by exceptionally high and CO2-independent carbonic anhydrase activity. Comparing both species, a general trade-off between maximum rates of photosynthesis and respective affinities is indicated. In conclusion, our results demonstrate effective CCMs in both species, yet very different strategies to adjust their carbon acquisition. This regulation in CCMs enables both species to maintain growth over a wide range of ecologically relevant pCO2 .
甲藻是一类分布广泛的浮游植物,能够形成有害藻华。该类群的核酮糖-1,5-二磷酸羧化酶/加氧酶(RubisCO)对二氧化碳的亲和力非常低,其光合作用可能特别容易受到碳限制,因此在海洋酸化(OA)导致大气二氧化碳分压(pCO2)上升的情况下会从中受益。在此,我们研究了海洋酸化对两种形成藻华的甲藻物种的影响,即钙质的锥状斯氏藻和有毒的塔玛亚历山大藻。通过稀释分批培养,我们评估了在一系列pCO2(即180 - 1200微大气压)下的生长特性。为了解潜在的生理机制,通过膜进样质谱法研究了无机碳获取的几个方面。我们的结果表明,在测试的pCO2范围内,这两个物种的生长速率均保持恒定,但我们观察到了许多物种特异性的反应。例如,锥状斯氏藻的生物量产量和细胞大小下降,而塔玛亚历山大藻在这些指标上对海洋酸化没有反应。在氧气通量方面,锥状斯氏藻的光合作用和呼吸速率保持不变,而在海洋酸化条件下,塔玛亚历山大藻的呼吸作用增加。这两个物种都具有高效的碳浓缩机制(CCM),其中HCO3(-)的吸收对二氧化碳有依赖性。在锥状斯氏藻中,异常高且不依赖二氧化碳的碳酸酐酶活性进一步促进了碳浓缩机制。比较这两个物种,表明在光合作用的最大速率和各自的亲和力之间存在普遍的权衡。总之,我们的结果表明这两个物种都具有有效的碳浓缩机制,但在调整碳获取方面有非常不同的策略。碳浓缩机制中的这种调节使这两个物种能够在广泛的具有生态相关性的pCO2范围内维持生长。