Opt Lett. 2013 Nov 15;38(22):4892-5. doi: 10.1364/OL.38.004892.
We demonstrate a new architecture for high-speed compressed sensing using chirp processing with ultrafast laser pulses, presently applied to the measurement of sparse-frequency microwave signals. We spectrally encode highly chirped ultrafast laser pulses with pseudorandom bit sequences such that every laser pulse acquires a unique spectral pattern. The pulses are partially compressed in time, extending the effective sampling rate beyond the electronic limit, and then modulated with a sparse microwave signal. Finally the pulses are fully compressed and detected, effectively integrating the measurement. We achieve 100 usable features per pattern allowing for 100 points in the reconstructed microwave spectra and experimentally demonstrate reconstruction of two- and three-tone microwave signals spanning from 900 MHz to 14.76 GHz. These spectra are reconstructed by measuring the energy of only 23 to 38 consecutive laser pulses acquired in a single shot with a 500 MHz real-time oscilloscope.
我们展示了一种使用啁啾处理的高速压缩感知新架构,该架构采用超快速激光脉冲,目前应用于稀疏频率微波信号的测量。我们使用伪随机比特序列对高度啁啾的超快速激光脉冲进行光谱编码,使得每个激光脉冲获得独特的光谱图案。脉冲在时间上部分压缩,将有效采样率扩展到电子限制之外,然后用稀疏微波信号进行调制。最后,脉冲被完全压缩并检测到,有效地实现了测量的集成。我们每个图案实现了 100 个可用特征,允许在重建的微波光谱中实现 100 个点,并通过实验演示了从 900 MHz 到 14.76 GHz 的两音和三音微波信号的重建。这些光谱仅通过单次采集的 23 到 38 个连续激光脉冲的能量测量来重建,使用的是 500 MHz 实时示波器。