Rahn-Lee Lilah, Komeili Arash
Plant and Microbial Biology, University of California Berkeley Berkeley, CA, USA.
Front Microbiol. 2013 Nov 26;4:352. doi: 10.3389/fmicb.2013.00352.
Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aquatic bacteria that contains single-domain crystals of the iron oxide magnetite (Fe3O4) or the iron sulfide greigite (Fe3S4). Here, recent advances in our understanding of the mechanisms of bacterial magnetite biomineralization are discussed and used as a framework for understanding less-well studied examples, including the bacterial intracellular biomineralization of cadmium, selenium, silver, nickel, uranium, and calcium carbonate. Understanding the molecular mechanisms underlying the biological formation of these minerals will have important implications for technologies such as the fabrication of nanomaterials and the bioremediation of toxic compounds.
尽管生物矿化最常见的例子是脊椎动物骨骼和牙齿中的磷酸钙,但许多细菌能够在其细胞内形成生物矿物。由于这些生物及其产生的矿物质具有多样性,对它们的研究可能会揭示更复杂生物中生物矿化基本机制的一些方面。细菌细胞内生物矿化研究得最透彻的例子是磁小体,它是由多种水生细菌产生的一种细胞器,含有氧化铁磁铁矿(Fe3O4)或硫化铁硫复铁矿(Fe3S4)的单畴晶体。在此,我们将讨论在理解细菌磁铁矿生物矿化机制方面的最新进展,并以此为框架来理解研究较少的例子,包括细菌对镉、硒、银、镍、铀和碳酸钙的细胞内生物矿化。了解这些矿物质生物形成背后的分子机制将对诸如纳米材料制造和有毒化合物生物修复等技术产生重要影响。