Suppr超能文献

基于改进的 Harris 角选择和多约束角匹配的高效视频全景图像拼接。

Efficient video panoramic image stitching based on an improved selection of Harris corners and a multiple-constraint corner matching.

机构信息

College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian, China.

出版信息

PLoS One. 2013 Dec 4;8(12):e81182. doi: 10.1371/journal.pone.0081182. eCollection 2013.

Abstract

Video panoramic image stitching is extremely time-consuming among other challenges. We present a new algorithm: (i) Improved, self-adaptive selection of Harris corners. The successful stitching relies heavily on the accuracy of corner selection. We fragment each image into numerous regions and select corners within each region according to the normalized variance of region grayscales. Such a selection is self-adaptive and guarantees that corners are distributed proportional to region texture information. The possible clustering of corners is also avoided. (ii) Multiple-constraint corner matching. The traditional Random Sample Consensus (RANSAC) algorithm is inefficient, especially when handling a large number of images with similar features. We filter out many inappropriate corners according to their position information, and then generate candidate matching pairs based on grayscales of adjacent regions around corners. Finally we apply multiple constraints on every two pairs to remove incorrectly matched pairs. By a significantly reduced number of iterations needed in RANSAC, the stitching can be performed in a much more efficient manner. Experiments demonstrate that (i) our corner matching is four times faster than normalized cross-correlation function (NCC) rough match in RANSAC and (ii) generated panoramas feature a smooth transition in overlapping image areas and satisfy real-time human visual requirements.

摘要

视频全景图像拼接在其他挑战之外还非常耗时。我们提出了一种新算法:(i)改进的、自适应的 Harris 角选择。成功的拼接在很大程度上依赖于角选择的准确性。我们将每张图像分割成许多区域,并根据区域灰度的归一化方差在每个区域内选择角。这种选择是自适应的,并保证角的分布与区域纹理信息成比例。还避免了角的可能聚类。(ii)多约束角匹配。传统的随机抽样一致性(RANSAC)算法效率低下,尤其是在处理具有相似特征的大量图像时。我们根据它们的位置信息过滤掉许多不合适的角,然后根据角周围相邻区域的灰度生成候选匹配对。最后,我们对每两个对应用多个约束来去除不正确的匹配对。通过 RANSAC 所需的迭代次数大大减少,可以更有效地进行拼接。实验表明:(i)我们的角匹配比 RANSAC 中的归一化互相关函数(NCC)粗匹配快四倍;(ii)生成的全景图在重叠图像区域具有平滑的过渡,满足实时人类视觉要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddf1/3852024/9e3589fe63ec/pone.0081182.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验