Suppr超能文献

基于药效团映射的虚拟筛选,随后进行分子对接研究,以寻找潜在的乙酰胆碱酯酶抑制剂作为抗阿尔茨海默病药物。

Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer's agents.

作者信息

Ambure Pravin, Kar Supratik, Roy Kunal

机构信息

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

出版信息

Biosystems. 2014 Feb;116:10-20. doi: 10.1016/j.biosystems.2013.12.002. Epub 2013 Dec 8.

Abstract

Alzheimer's disease (AD) is turning out to be one of the lethal diseases in older people. Acetylcholinesterase (AChE) is a crucial target in designing of drugs against AD. The present in silico study was carried out to explore natural compounds as potential AChE inhibitors. Virtual screening, via drug-like ADMET filter, best pharmacophore model and molecular docking analyses, has been utilized to identify putative novel AChE inhibitors. The InterBioScreen's Natural Compound (NC) database was first filtered by applying drug-like ADMET properties and then with the pharmacophore-based virtual screening followed by molecular docking analyses. Based on docking score, interaction patterns and calculated activity, the final hits were selected and these consist of coumarin and non-coumarin classes of compounds. Few hits were found to have been already reported for their AChE inhibitory activity in different literatures confirming reliability of our pharmacophore model. The remaining hits are suggested to be potential AChE inhibitors for AD.

摘要

阿尔茨海默病(AD)正成为老年人中的致命疾病之一。乙酰胆碱酯酶(AChE)是设计抗AD药物的关键靶点。开展了本次计算机模拟研究以探索作为潜在AChE抑制剂的天然化合物。通过类药ADMET过滤器、最佳药效团模型和分子对接分析进行虚拟筛选,以鉴定推定的新型AChE抑制剂。首先通过应用类药ADMET性质对InterBioScreen的天然化合物(NC)数据库进行筛选,然后进行基于药效团的虚拟筛选,接着进行分子对接分析。基于对接分数、相互作用模式和计算活性,选择最终的命中化合物,这些化合物包括香豆素类和非香豆素类化合物。在不同文献中已报道了少数命中化合物的AChE抑制活性,这证实了我们药效团模型的可靠性。其余的命中化合物被认为是AD潜在的AChE抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验