De-la-Torre Pedro, Martínez-García Claudia, Gratias Paul, Mun Matthew, Santana Paula, Akyuz Nurunisa, González Wendy, Indzhykulian Artur A, Ramírez David
Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA.
Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile.
bioRxiv. 2024 Dec 20:2024.03.05.583611. doi: 10.1101/2024.03.05.583611.
Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. Despite extensive research on otoprotective compounds targeting MET channels, our understanding of how small-molecule modulators interact with these channels remains limited, hampering the discovery of novel drugs. Here, we propose a structure-based screening approach, integrating 3D-pharmacophore modeling, molecular dynamics simulations of the TMC1+CIB2+TMIE complex, and experimental validation. Our pipeline successfully identified several novel compounds and FDA-approved drugs that reduced dye uptake in cultured cochlear explants, indicating MET-modulation activity. Simulations, molecular docking and free-energy estimations allowed us to identify three potential drug-binding sites within the channel pore, phospholipids, key amino acids involved in modulator interactions, and TMIE as a flexible component of the MET complex. We also identified shared ligand-binding features between TMC and structurally related TMEM16 proteins, providing novel insights into their distinct inhibition. Our pipeline offers a broad application for discovering modulators for mechanosensitive ion channels.
我们的听觉和维持平衡的能力依赖于内耳感觉毛细胞的正常功能,这些毛细胞通过由TMC1/2蛋白组成的机械电换能(MET)通道将机械刺激转化为电信号。然而,耳毒性药物(如氨基糖苷类和顺铂)的治疗应用,这些药物可通过MET通道进入毛细胞,常常导致严重的听觉和前庭功能障碍。尽管针对MET通道的耳保护化合物进行了广泛研究,但我们对小分子调节剂如何与这些通道相互作用的理解仍然有限,这阻碍了新型药物的发现。在此,我们提出一种基于结构的筛选方法,整合3D药效团建模、TMC1+CIB2+TMIE复合物的分子动力学模拟以及实验验证。我们的流程成功鉴定出几种新型化合物和FDA批准的药物,这些药物减少了培养的耳蜗外植体中的染料摄取,表明具有MET调节活性。模拟、分子对接和自由能估计使我们能够确定通道孔内的三个潜在药物结合位点、磷脂、参与调节剂相互作用的关键氨基酸以及TMIE作为MET复合物的一个灵活组成部分。我们还确定了TMC与结构相关的TMEM16蛋白之间共享的配体结合特征,为它们的不同抑制作用提供了新的见解。我们的流程为发现机械敏感离子通道的调节剂提供了广泛应用。