Rodríguez-Velázquez Eustolia, Silva Maite, Taboada Pablo, Mano João F, Suárez-Quintanilla David, Alatorre-Meda Manuel
Departamento de Estomatología, Facultad de Odontología, ‡Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, §Grupo de Física de Coloides y Polímeros, Departamento de Física de Materia Condensada, Facultad de Física, #Oral Sciences Research Group, Departamento de Estomatología, Facultad de Odontología, and ○Unidade de Tratamento de Deformidades Dentofaciais-Máster en Ortodoncia, Departamento de Estomatología, Facultad de Odontología, Universidad de Santiago de Compostela , Campus Sur S/N, E-15782 Santiago de Compostela, Spain.
Biomacromolecules. 2014 Jan 13;15(1):291-301. doi: 10.1021/bm401541v. Epub 2013 Dec 27.
It is well accepted that the surface modification of biomaterials can improve their biocompatibility. In this context, techniques like ion etching, plasma-mediated chemical functionalization, electrospinning, and contact microprinting have successfully been employed to promote the cell adhesion and proliferation of chitosan (CH) substrates. However, they prove to be time-consuming, highly dependent on environmental conditions, and/or limited to the use of expensive materials and sophisticated instruments not accessible to standard laboratories, hindering to a high extent their straightforward application. Filling this gap, this paper proposes the superficial cross-linking of CH as a much simpler and accessible means to modify its superficial properties in order to enhance its cellular affinity. CH membranes were prepared by solvent casting followed by a cross-linking step mediated by the chemical vapor deposition (CVD) of glutaraldehyde (GA). The membranes were characterized against non- and solution cross-linked membranes in terms of their mechanical/surface properties and biological performance. Among others, the CVD membranes proved (i) to be more mechanically stable against cell culture and sterilization than membranes cross-linked in solution and (ii) to prompt the adherence and sustained proliferation of healthy cells to levels even superior to commercial tissue culture plates (TCPs). Accordingly, the CVD cross-linking approach was demonstrated to be a simple and cost-effective alternative to the aforementioned conventional methods. Interestingly, this concept can also be applied to other biomaterials as long as GA (or other volatile components alike) can be employed as a cross-linker, making possible the cross-linking reaction at mild experimental conditions, neither requiring sophisticated lab implements nor using any potentially harmful procedure.
生物材料的表面改性能够改善其生物相容性,这一点已得到广泛认可。在此背景下,离子蚀刻、等离子体介导的化学功能化、静电纺丝和接触微印刷等技术已成功用于促进壳聚糖(CH)基材的细胞黏附和增殖。然而,这些技术被证明耗时较长,高度依赖环境条件,和/或仅限于使用标准实验室无法获得的昂贵材料和精密仪器,这在很大程度上阻碍了它们的直接应用。为填补这一空白,本文提出对CH进行表面交联,作为一种更简单且易于实现的方法来改变其表面性质,以增强其细胞亲和力。通过溶液浇铸制备CH膜,随后进行由戊二醛(GA)化学气相沉积(CVD)介导的交联步骤。根据其机械/表面性质和生物学性能,对这些膜与非交联和溶液交联膜进行了表征。其中,CVD膜被证明:(i)在细胞培养和灭菌方面比溶液交联膜具有更高的机械稳定性;(ii)能促使健康细胞的黏附和持续增殖,甚至达到优于商业组织培养板(TCP)的水平。因此,可以证明CVD交联方法是上述传统方法的一种简单且经济高效的替代方法。有趣的是,只要GA(或其他类似的挥发性成分)可以用作交联剂,这一概念也可以应用于其他生物材料,使得在温和的实验条件下进行交联反应成为可能,既不需要精密的实验室设备,也不使用任何潜在有害的程序。