Araiza-Verduzco Fernanda, Rodríguez-Velázquez Eustolia, Cruz Harold, Rivero Ignacio A, Acosta-Martínez Delvis R, Pina-Luis Georgina, Alatorre-Meda Manuel
Tecnológico Nacional de México/I. T. Tijuana. Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, BC, México.
Facultad de Odontología, Universidad Autónoma de Baja California, Campus Tijuana, Calzada Universidad 14418, 22390 Tijuana, BC, México.
Materials (Basel). 2020 Jan 22;13(3):534. doi: 10.3390/ma13030534.
Hydrogels for load-bearing biomedical applications, such as soft tissue replacement, are required to be tough and biocompatible. In this sense, alginate-methacrylate hydrogels (H-ALGMx) are well known to present modulable levels of elasticity depending on the methacrylation degree; however, little is known about the role of additional structural parameters. In this work, we present an experimental-computational approach aimed to evaluate the effect of the molecular conformation and electron density of distinct methacrylate groups on the mechanical properties of photocrosslinked H-ALGMx hydrogels. Three alginate-methacrylate precursor macromers (ALGMx) were synthesized: alginate-glycidyl methacrylate (ALGM1), alginate-2-aminoethyl methacrylate (ALGM2), and alginate-methacrylic anhydride (ALGM3). The macromers were studied by Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (H-NMR), and density functional theory method (DFT) calculations to assess their molecular/electronic configurations. In parallel, they were also employed to produce H-ALGMx hydrogels, which were characterized by compressive tests. The obtained results demonstrated that tougher hydrogels were produced from ALGMx macromers presenting the C=C reactive bond with an outward orientation relative to the polymer chain and showing free rotation, which favored in conjunction the covalent crosslinking. In addition, although playing a secondary role, it was also found that the presence of acid hydrogen atoms in the methacrylate unit enables the formation of supramolecular hydrogen bonds, thereby reinforcing the mechanical properties of the H-ALGMx hydrogels. By contrast, impaired mechanical properties resulted from macromer conditions in which the C=C bond adopted an inward orientation to the polymer chain accompanied by a torsional impediment.
用于承重生物医学应用(如软组织替代)的水凝胶需要具备韧性和生物相容性。从这个意义上讲,众所周知,藻酸盐 - 甲基丙烯酸酯水凝胶(H - ALGMx)的弹性水平可根据甲基丙烯酸化程度进行调节;然而,对于其他结构参数的作用却知之甚少。在这项工作中,我们提出了一种实验 - 计算方法,旨在评估不同甲基丙烯酸酯基团的分子构象和电子密度对光交联H - ALGMx水凝胶力学性能的影响。合成了三种藻酸盐 - 甲基丙烯酸酯前体大分子单体(ALGMx):藻酸盐 - 甲基丙烯酸缩水甘油酯(ALGM1)、藻酸盐 - 甲基丙烯酸2 - 氨基乙酯(ALGM2)和藻酸盐 - 甲基丙烯酸酐(ALGM3)。通过傅里叶变换红外光谱(FTIR)、质子核磁共振(H - NMR)和密度泛函理论方法(DFT)计算对大分子单体进行研究,以评估其分子/电子构型。同时,它们还被用于制备H - ALGMx水凝胶,并通过压缩试验对其进行表征。所得结果表明,由具有相对于聚合物链向外取向且显示自由旋转的C = C反应键的ALGMx大分子单体制备出了更坚韧的水凝胶,这有利于共价交联。此外,虽然起次要作用,但还发现甲基丙烯酸酯单元中酸性氢原子的存在能够形成超分子氢键,从而增强了H - ALGMx水凝胶的力学性能。相比之下,当C = C键相对于聚合物链向内取向并伴有扭转阻碍时,大分子单体的条件会导致力学性能受损。