Suppr超能文献

支持的金催化:从小分子活化到绿色化学合成。

Supported gold catalysis: from small molecule activation to green chemical synthesis.

机构信息

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University , Shanghai 200433, People's Republic of China.

出版信息

Acc Chem Res. 2014 Mar 18;47(3):793-804. doi: 10.1021/ar400165j. Epub 2013 Dec 11.

Abstract

With diminishing natural resources, there is an ever-increasing demand for cost-effective and sustainable production of fine and commodity chemicals. For this purpose, there is a need for new catalytic methods that can permit efficient and targeted conversion of fossil and biorenewable feedstocks with lower energy requirements and environmental impact. A significant number of industrial catalytic processes are performed by platinum-group-metal (PGM)-based heterogeneous catalysts capable of activating a range of important small molecules, such as CO, O2, H2, and N2. In contrast, there is a general feeling that gold (Au) cannot act as an efficient catalyst because of its inability to activate most molecules, which is essential to any catalytic processes. As a consequence, researchers have long neglected the potential for use of gold as a catalyst. In recent years, however, chemists have put forth tremendous effort and progress in the use of supported gold catalysts to facilitate a variety of useful synthetic transformations. The seminal discovery by Haruta in 1987 that suitably prepared Au-based catalysts were surprisingly active for CO oxidation even at 200 K initiated rapid development of the field. Since then, researchers have widely employed Au-based catalysts in many types of mild chemical processes, with special focus on selective reactions involving small molecules (for example, CO, H2O, O2, or H2) as a reactant. That gold in the form of tiny nanoparticles (NPs, generally less than 5 nm in diameter) can subtly activate the reactant molecules under mild conditions has been evoked to explain the superior effectiveness of gold compared with conventional PGMs. In this context, Au-based catalysts are gaining great significance in developing new green processes with improved selectivity and energy minimization. In this Account, we describe our efforts toward the development of a range of green and selective processes largely through the appropriate choice of Au catalysts coupled with the coactivation of a plethora of simple small molecules. We have focused on developing new mild and selective reductive transformations that can offer efficient alternatives to conventional Au-catalyzed hydrogenation processes. We have demonstrated Au-catalyzed selective transformation involving HCOOH activation, Au-catalyzed selective reduction involving CO and H2O activation, and Au-catalyzed C-N/C-C bond formation via alcohol activation with high selectivity. The interplay between the support and gold plays a critical role in the success of these transformations, thus highlighting the crucial importance of support in tuning the performance of supported Au NPs. Most of the reactions can tolerate a range of functional groups, and some can occur under ambient conditions. Depending on the specific process, we propose several mechanistic scenarios that describe the plausible small-molecule-mediated reaction pathways. Additionally, we have observed an unusual reactant-promoted H2O or H2 activation over supported Au NPs, thus offering new strategies for green and facile synthesis of diverse amides and heteroaromatic nitrogen compounds. We anticipate that key insights into how simple small molecules are activated for further reaction over Au NPs should lead to a better understanding of gold catalysis and the development of new innovative PGM-free technologies.

摘要

随着自然资源的减少,人们对具有成本效益和可持续性的精细化学品和大宗商品生产的需求日益增长。为此,需要新的催化方法,这些方法可以在较低的能源需求和环境影响下,有效地、有针对性地转化化石和生物可再生原料。大量的工业催化过程是由能够激活一系列重要小分子(如 CO、O2、H2 和 N2)的铂族金属(PGM)基多相催化剂进行的。相比之下,人们普遍认为金(Au)不能作为一种有效的催化剂,因为它不能激活大多数分子,而这对任何催化过程都是必不可少的。因此,研究人员长期以来一直忽视了将金用作催化剂的潜力。然而,近年来,化学家们在使用负载金催化剂促进各种有用的合成转化方面付出了巨大的努力并取得了进展。1987 年 Haruta 的开创性发现表明,经过适当制备的 Au 基催化剂即使在 200 K 下也能对 CO 氧化表现出惊人的活性,这一发现促使该领域迅速发展。此后,研究人员已在许多类型的温和化学过程中广泛使用 Au 基催化剂,特别关注涉及小分子(例如 CO、H2O、O2 或 H2)作为反应物的选择性反应。金纳米颗粒(NPs,通常直径小于 5nm)的形式可以在温和条件下微妙地激活反应物分子,这一现象被用来解释金与传统 PGM 相比的优越效果。在这种情况下,Au 基催化剂在开发具有改进选择性和能量最小化的新绿色工艺方面具有重要意义。在本专题介绍中,我们描述了我们通过适当选择 Au 催化剂并与大量简单小分子的协同激活,开发一系列绿色和选择性工艺的努力。我们专注于开发新的温和和选择性还原转化,这些转化可以为传统的 Au 催化氢化过程提供有效的替代方案。我们已经证明了涉及 HCOOH 活化的 Au 催化选择性转化、涉及 CO 和 H2O 活化的 Au 催化选择性还原以及通过醇活化形成 C-N/C-C 键的 Au 催化选择性转化,这些转化具有高选择性。载体和金之间的相互作用在这些转化的成功中起着关键作用,因此突出了载体在调整负载 Au NPs 性能方面的重要性。大多数反应可以耐受一系列官能团,有些反应可以在环境条件下发生。根据具体过程,我们提出了几种可能的反应途径,描述了可能的小分子介导反应途径。此外,我们还观察到负载 Au NPs 上 H2O 或 H2 的异常反应物促进的活化,从而为绿色、简便地合成各种酰胺和杂环氮化合物提供了新的策略。我们预计,对简单小分子如何被激活以进一步在 Au NPs 上进行反应的深入了解,将有助于更好地理解金催化作用,并开发新的无 PGM 创新技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验