Morisse Samuel, Zaffagnini Mirko, Gao Xing-Huang, Lemaire Stéphane D, Marchand Christophe H
1 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie Curie , Paris, France .
Antioxid Redox Signal. 2014 Sep 20;21(9):1271-84. doi: 10.1089/ars.2013.5632. Epub 2014 Mar 6.
Protein S-nitrosylation, a post-translational modification (PTM) consisting of the covalent binding of nitric oxide (NO) to a cysteine thiol moiety, plays a major role in cell signaling and is recognized to be involved in numerous physiological processes and diseases in mammals. The importance of nitrosylation in photosynthetic eukaryotes has been less studied. The aim of this study was to expand our knowledge on protein nitrosylation by performing a large-scale proteomic analysis of proteins undergoing nitrosylation in vivo in Chlamydomonas reinhardtii cells under nitrosative stress.
Using two complementary proteomic approaches, 492 nitrosylated proteins were identified. They participate in a wide range of biological processes and pathways, including photosynthesis, carbohydrate metabolism, amino acid metabolism, translation, protein folding or degradation, cell motility, and stress. Several proteins were confirmed in vitro by western blot, site-directed mutagenesis and activity measurements. Moreover, 392 sites of nitrosylation were also identified. These results strongly suggest that S-nitrosylation could constitute a major mechanism of regulation in C. reinhardtii under nitrosative stress conditions.
This study constitutes the largest proteomic analysis of protein nitrosylation reported to date.
The identification of 381 previously unrecognized targets of nitrosylation further extends our knowledge on the importance of this PTM in photosynthetic eukaryotes. The data have been deposited to the ProteomeXchange repository with identifier PXD000569.
蛋白质S-亚硝基化是一种翻译后修饰(PTM),由一氧化氮(NO)与半胱氨酸硫醇部分共价结合组成,在细胞信号传导中起主要作用,并且被认为参与哺乳动物的许多生理过程和疾病。亚硝基化在光合真核生物中的重要性研究较少。本研究的目的是通过对莱茵衣藻细胞在亚硝化应激下体内发生亚硝基化的蛋白质进行大规模蛋白质组学分析,来扩展我们对蛋白质亚硝基化的认识。
使用两种互补的蛋白质组学方法,鉴定出492个亚硝基化蛋白质。它们参与广泛的生物过程和途径,包括光合作用、碳水化合物代谢、氨基酸代谢、翻译、蛋白质折叠或降解、细胞运动和应激。通过蛋白质印迹、定点诱变和活性测量在体外证实了几种蛋白质。此外,还鉴定出392个亚硝基化位点。这些结果强烈表明,在亚硝化应激条件下,S-亚硝基化可能构成莱茵衣藻中的一种主要调节机制。
本研究是迄今为止报道的最大规模的蛋白质亚硝基化蛋白质组学分析。
对381个先前未被识别的亚硝基化靶点的鉴定进一步扩展了我们对这种翻译后修饰在光合真核生物中的重要性的认识。数据已存入ProteomeXchange储存库,标识符为PXD000569。