Lee Chen-Ting, Boss Mary-Keara, Dewhirst Mark W
1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina.
Antioxid Redox Signal. 2014 Jul 10;21(2):313-37. doi: 10.1089/ars.2013.5759. Epub 2014 Mar 24.
Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance.
Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed.
In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies.
A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices.
大多数实体瘤都包含低氧或缺氧区域。肿瘤缺氧与临床预后不良相关,并在肿瘤放射抗性中起关键作用。
肿瘤微环境中存在两种主要类型的缺氧:慢性缺氧和循环性缺氧。慢性缺氧是由于氧气扩散距离有限所致,而循环性缺氧主要是由于微血管红细胞通量的变化和灌注的暂时紊乱引起的。根据肿瘤模型的不同,慢性缺氧可能导致肿瘤进展或退行性效应。然而,循环性缺氧后通常会出现更具侵袭性的表型发展趋势。借助先进的缺氧成像技术,可以分析肿瘤缺氧的时空特征以及肿瘤微环境的变化。
在本综述中,我们重点关注慢性和循环性缺氧对放射治疗的生物学和临床后果。我们还讨论了为在临床前和临床研究中检测和监测肿瘤缺氧而开发的先进非侵入性成像技术。
通过非侵入性成像更好地理解肿瘤缺氧的机制将为改进放射治疗实践提供基础。