Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain.
Faculty of Science, University of Split, HR-21000 Split, Croatia.
J Chem Phys. 2013 Dec 14;139(22):224708. doi: 10.1063/1.4843375.
The experimental realization of a thin layer of spin-polarized hydrogen H↓ adsorbed on top of the surface of superfluid (4)He provides one of the best examples of a stable, nearly two-dimensional (2D) quantum Bose gas. We report a theoretical study of this system using quantum Monte Carlo methods in the limit of zero temperature. Using the full Hamiltonian of the system, composed of a superfluid (4)He slab and the adsorbed H↓ layer, we calculate the main properties of its ground state using accurate models for the pair interatomic potentials. Comparing the results for the layer with the ones obtained for a strictly 2D setup, we analyze the departure from the 2D character when the density increases. Only when the coverage is rather small the use of a purely 2D model is justified. The condensate fraction of the layer is significantly larger than in 2D at the same surface density, being as large as 60% at the largest coverage studied.
实验实现了一层自旋极化的氢 H↓吸附在超流(4)He 表面上,这提供了一个稳定的、近二维(2D)量子玻色气体的最佳例子。我们使用量子蒙特卡罗方法在零温度极限下对该系统进行了理论研究。使用由超流(4)He 薄片和吸附的 H↓层组成的系统的全哈密顿量,我们使用对原子间相互作用势的精确模型来计算其基态的主要性质。通过比较层的结果和严格 2D 情况下得到的结果,我们分析了当密度增加时偏离 2D 特性的情况。只有当覆盖度相当小时,才可以使用纯粹的 2D 模型。在相同的表面密度下,层的凝聚分数明显大于 2D,在研究的最大覆盖度下高达 60%。