Suppr超能文献

药物遗传学变异与二甲双胍反应。

Pharmacogenetic variation and metformin response.

机构信息

Department of Pharmacy, Xijing Hospital, and The State Key Laboratory of Cancer Biology and The Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, People's Republic of China.

出版信息

Curr Drug Metab. 2013 Dec;14(10):1070-82. doi: 10.2174/1389200214666131211153933.

Abstract

Diabetes is a major health problem worldwide, and metformin, a traditional oral anti-hyperglycemic drug, is now believed to be the most widely prescribed antidiabetic drug. Metformin acts primarily by inhibiting hepatic glucose production and improving insulin sensitivity. Metformin is absorbed predominately by the small intestine and excreted in an unaltered form in the urine. The pharmacokinetics of metformin is primarily determined by membrane transporters, including the plasma membrane monoamine transporter (PMAT), the organic cation transporters (OCTs), the multidrug and toxin extrusion (MATE) transporters, and the critical protein kinase AMPactivated protein kinase (AMPK). PMAT may play a role in the uptake of metformin from the gastrointestinal tract, while OCTs mediate the intestinal absorption, hepatic uptake, and renal excretion of metformin. MATEs are believed to contribute to the hepatic and renal excretion of the drug. The pharmacologic effects of metformin are primarily exerted in the liver, at least partly via the activation of AMPK and the subsequent inhibition of gluconeogenesis. A considerable amount of pharmacogenetic research has demonstrated that genetic variation is one of the major factors affecting metformin response. Moreover, it has become increasingly clear that membrane transporters are important determinants of the pharmacokinetics of metformin. In this review, we will discuss the genetic variants of major transporters that purportedly determine the pharmacokinetics of metformin in terms of drug bioavailability, distribution, and excretion, such as PMAT, OCTs, and MATEs. Understanding how genetic variation affects metformin response will help promote more effective use of the drug for the treatment of type 2 diabetes (T2D).

摘要

糖尿病是全球范围内的一个主要健康问题,二甲双胍作为一种传统的口服抗高血糖药物,目前被认为是应用最广泛的抗糖尿病药物。二甲双胍主要通过抑制肝脏葡萄糖生成和提高胰岛素敏感性发挥作用。二甲双胍主要通过小肠吸收,以原形从尿液中排泄。二甲双胍的药代动力学主要由膜转运体决定,包括质膜单胺转运体(PMAT)、有机阳离子转运体(OCTs)、多药和毒素外排(MATE)转运体以及关键蛋白激酶 AMP 激活的蛋白激酶(AMPK)。PMAT 可能在二甲双胍从胃肠道摄取中发挥作用,而 OCTs 介导二甲双胍的肠道吸收、肝脏摄取和肾脏排泄。MATEs 被认为有助于药物的肝和肾排泄。二甲双胍的药理作用主要在肝脏发挥,至少部分通过激活 AMPK 以及随后抑制糖异生来实现。大量的药物遗传学研究表明,遗传变异是影响二甲双胍反应的主要因素之一。此外,越来越明显的是,膜转运体是二甲双胍药代动力学的重要决定因素。在这篇综述中,我们将讨论主要转运体的遗传变异,这些变异据称决定了二甲双胍的药代动力学,包括药物生物利用度、分布和排泄,如 PMAT、OCTs 和 MATEs。了解遗传变异如何影响二甲双胍的反应将有助于促进更有效地将该药物用于治疗 2 型糖尿病(T2D)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验