Suppr超能文献

形态复杂电极的 Gouy-Chapman-Stern 双电层模型的推广:确定性和随机形态

Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode: deterministic and stochastic morphologies.

作者信息

Kant Rama, Singh Maibam Birla

机构信息

Department of Chemistry, University of Delhi, Delhi 110007, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052303. doi: 10.1103/PhysRevE.88.052303. Epub 2013 Nov 7.

Abstract

We generalize the linearized Gouy-Chapman-Stern theory of an electric double layer for morphologically complex and disordered electrodes. An equation for capacitance is obtained using a linear Gouy-Chapman or Debye-Hückel equation for the potential near the complex-geometry electrode-electrolyte interface. The effect of the surface morphology of an electrode on an electric double layer is obtained using multiple scattering formalism in surface curvature. The result for capacitance is expressed in terms of the ratio of Gouy screening length to the local principal radii of curvatures of the surface. We also include a contribution of a compact layer, which is significant in the overall prediction of capacitance. Our general results are analyzed in detail for two special morphologies of electrodes, i.e., a nanoporous membrane and a forest of nanopillars. Variations of local shapes and global size variations due to residual randomness in morphology are accounted for as curvature fluctuations over a reference shape element. In particular, the theory shows that the presence of geometrical fluctuations in porous systems causes an enhanced dependence of capacitance on mean pore sizes and suppresses the magnitude of capacitance. This theory is further extended to include contributions to capacitance from adsorption of ions and electrode material due to electronic screening. Our predictions are in reasonable agreement with recent experimental measurements on supercapacitive microporous and mesoporous systems.

摘要

我们将用于形态复杂且无序电极的双电层线性化古依-查普曼-斯特恩理论进行了推广。利用复几何形状电极-电解质界面附近电位的线性古依-查普曼方程或德拜-休克尔方程得到了电容方程。利用表面曲率的多重散射形式,得到了电极表面形态对双电层的影响。电容的结果用古依屏蔽长度与表面局部主曲率半径的比值表示。我们还考虑了紧密层的贡献,这在电容的整体预测中很重要。针对两种特殊的电极形态,即纳米多孔膜和纳米柱阵列,对我们的一般结果进行了详细分析。由于形态上的残余随机性导致的局部形状变化和整体尺寸变化被视为参考形状元素上的曲率波动。特别地,该理论表明多孔系统中几何波动的存在会导致电容对平均孔径的依赖性增强,并抑制电容的大小。该理论进一步扩展,以包括离子吸附和电子屏蔽引起的电极材料对电容的贡献。我们的预测与最近对超级电容性微孔和介孔系统的实验测量结果合理吻合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验