Suppr超能文献

相似文献

1
Carbon-Nanotube-Electrolyte Interface: Quantum and Electric Double Layer Capacitance.
ACS Nano. 2018 Oct 23;12(10):9763-9774. doi: 10.1021/acsnano.8b01427. Epub 2018 Sep 28.
2
Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode: deterministic and stochastic morphologies.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052303. doi: 10.1103/PhysRevE.88.052303. Epub 2013 Nov 7.
3
Double-layer in ionic liquids: paradigm change?
J Phys Chem B. 2007 May 24;111(20):5545-57. doi: 10.1021/jp067857o. Epub 2007 May 1.
4
Measurement of the combined quantum and electrochemical capacitance of a carbon nanotube.
Nat Commun. 2019 Aug 9;10(1):3598. doi: 10.1038/s41467-019-11589-9.
5
Surface structure at the ionic liquid-electrified metal interface.
Acc Chem Res. 2008 Mar;41(3):421-31. doi: 10.1021/ar700185h. Epub 2008 Jan 31.
6
Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous Solutions.
Langmuir. 2020 Apr 28;36(16):4250-4260. doi: 10.1021/acs.langmuir.0c00024. Epub 2020 Apr 15.
7
Double Layer at the Pt(111)-Aqueous Electrolyte Interface: Potential of Zero Charge and Anomalous Gouy-Chapman Screening.
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):711-715. doi: 10.1002/anie.201911929. Epub 2019 Nov 26.
9
Understanding the Electric Double Layer at the Electrode-Electrolyte Interface: Part I - No Ion Specific Adsorption.
Chemphyschem. 2024 Dec 2;25(23):e202400650. doi: 10.1002/cphc.202400650. Epub 2024 Oct 24.
10
Double-layer structure of the Pt(111)-aqueous electrolyte interface.
Proc Natl Acad Sci U S A. 2022 Jan 18;119(3). doi: 10.1073/pnas.2116016119.

引用本文的文献

1
Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films.
Nat Commun. 2025 Jan 2;16(1):312. doi: 10.1038/s41467-024-55030-2.
2
3
Epitaxial Metal Electrodeposition Controlled by Graphene Layer Thickness.
ACS Nano. 2024 May 28;18(21):13866-13875. doi: 10.1021/acsnano.4c02981. Epub 2024 May 15.
5
Visualizing the role of applied voltage in non-metal electrocatalysts.
Natl Sci Rev. 2023 Jun 6;10(9):nwad166. doi: 10.1093/nsr/nwad166. eCollection 2023 Sep.
6
Theory and Simulations of Ionic Liquids in Nanoconfinement.
Chem Rev. 2023 May 24;123(10):6668-6715. doi: 10.1021/acs.chemrev.2c00728. Epub 2023 May 10.
7
Less Is More: Can Low Quantum Capacitance Boost Capacitive Energy Storage?
J Phys Chem Lett. 2022 Dec 1;13(47):10976-10980. doi: 10.1021/acs.jpclett.2c02968. Epub 2022 Nov 18.
8
Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands.
Nat Chem. 2022 Mar;14(3):267-273. doi: 10.1038/s41557-021-00865-1. Epub 2022 Feb 17.
9
Porous g-CN and MXene Dual-Confined FeOOH Quantum Dots for Superior Energy Storage in an Ionic Liquid.
Adv Sci (Weinh). 2019 Nov 27;7(2):1901975. doi: 10.1002/advs.201901975. eCollection 2020 Jan.
10
Measurement of the combined quantum and electrochemical capacitance of a carbon nanotube.
Nat Commun. 2019 Aug 9;10(1):3598. doi: 10.1038/s41467-019-11589-9.

本文引用的文献

1
Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?
Nanoscale Horiz. 2016 Jan 18;1(1):45-52. doi: 10.1039/c5nh00004a. Epub 2015 Sep 16.
2
On the capacitance of narrow nanotubes.
Phys Chem Chem Phys. 2017 Aug 9;19(31):20393-20400. doi: 10.1039/c7cp03090h.
3
Interactions of anions and cations in carbon nanotubes.
Faraday Discuss. 2016 Dec 12;193:415-426. doi: 10.1039/c6fd00076b.
4
New Perspectives on the Charging Mechanisms of Supercapacitors.
J Am Chem Soc. 2016 May 11;138(18):5731-44. doi: 10.1021/jacs.6b02115. Epub 2016 Apr 29.
5
Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface.
Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3790-4. doi: 10.1002/anie.201512025. Epub 2016 Feb 16.
6
Single-file charge storage in conducting nanopores.
Phys Rev Lett. 2014 Jul 25;113(4):048701. doi: 10.1103/PhysRevLett.113.048701.
7
Charging the quantum capacitance of graphene with a single biological ion channel.
ACS Nano. 2014 May 27;8(5):4228-38. doi: 10.1021/nn501376z. Epub 2014 Apr 28.
8
Accelerating charging dynamics in subnanometre pores.
Nat Mater. 2014 Apr;13(4):387-93. doi: 10.1038/nmat3916.
9
A review of molecular modelling of electric double layer capacitors.
Phys Chem Chem Phys. 2014 Apr 14;16(14):6519-38. doi: 10.1039/c3cp55186e. Epub 2014 Mar 4.
10
The simplest model of charge storage in single file metallic nanopores.
Faraday Discuss. 2013;164:117-33. doi: 10.1039/c3fd00026e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验