Li Jinfeng, Pham Phi H Q, Zhou Weiwei, Pham Ted D, Burke Peter J
ACS Nano. 2018 Oct 23;12(10):9763-9774. doi: 10.1021/acsnano.8b01427. Epub 2018 Sep 28.
We present a comprehensive study of the electrochemical capacitance between a one-dimensional electronic material and an electrolyte. In contrast to a conventional, planar electrode, the nanoscale dimension of the electrode (with diameter smaller than the Debye length and approaching the size of the ions in solution) qualitatively changes the capacitance, which we measure and model herein. Furthermore, the finite density of states in these low dimensional electronic systems results in a quantum capacitance, which is comparable to the electrochemical capacitance. Using electrochemical impedance spectroscopy (EIS), we measure the ensemble average, complex, frequency dependent impedance (from 0.1 Hz to 1 MHz) between a purified (99.9%) semiconducting nanotube network and an aqueous electrolyte (KCl) at different concentrations between 10 mM and 1 M. The potential dependence of the capacitance is convoluted with the potential dependence of the in-plane conductance of the nanotube network, which we model using a transmission-line model to account for the frequency dependent in-plane impedance as well as the total interfacial impedance between the network and the electrolyte. The ionic strength dependence of the capacitance is expected to have a root cause from the double layer capacitance, which we model using a modified Poisson-Boltzmann equation. The relative contributions from those two capacitances can be quantitatively decoupled. We find a total capacitance per tube of 0.67-1.13 fF/μm according to liquid gate potential varying from -0.5 to -0.7 V.
我们展示了一项关于一维电子材料与电解质之间电化学电容的全面研究。与传统的平面电极不同,电极的纳米尺度维度(直径小于德拜长度且接近溶液中离子的大小)定性地改变了电容,我们在此对其进行测量和建模。此外,这些低维电子系统中的有限态密度导致了量子电容,其与电化学电容相当。使用电化学阻抗谱(EIS),我们测量了纯化的(99.9%)半导体纳米管网络与不同浓度(10 mM至1 M)的水性电解质(KCl)之间的系综平均、复频依赖阻抗(从0.1 Hz至1 MHz)。电容的电位依赖性与纳米管网络面内电导的电位依赖性相互交织,我们使用传输线模型对其进行建模,以考虑频率依赖的面内阻抗以及网络与电解质之间的总界面阻抗。预计电容的离子强度依赖性源于双层电容,我们使用修正的泊松 - 玻尔兹曼方程对其进行建模。这两种电容的相对贡献可以定量解耦。根据液体栅极电位从 -0.5 V变化到 -0.7 V,我们发现每根管子的总电容为0.67 - 1.13 fF/μm。