Suppr超能文献

随机酉矩阵及其张量积本征相位之间的极值间距。

Extremal spacings between eigenphases of random unitary matrices and their tensor products.

作者信息

Smaczyński Marek, Tkocz Tomasz, Kuś Marek, Życzkowski Karol

机构信息

Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland.

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052902. doi: 10.1103/PhysRevE.88.052902. Epub 2013 Nov 5.

Abstract

Extremal spacings between eigenphases of random unitary matrices of size N pertaining to circular ensembles are investigated. Explicit probability distributions for the minimal spacing for various ensembles are derived for N=4. We study ensembles of tensor product of k random unitary matrices of size n which describe independent evolution of a composite quantum system consisting of k subsystems. In the asymptotic case, as the total dimension N=n(k) becomes large, the nearest neighbor distribution P(s) becomes Poissonian, but statistics of extreme spacings P(s(min)) and P(s(max)) reveal certain deviations from the Poissonian behavior.

摘要

研究了与圆形系综相关的大小为(N)的随机酉矩阵本征相位之间的极值间距。对于(N = 4),推导了各种系综最小间距的显式概率分布。我们研究了大小为(n)的(k)个随机酉矩阵的张量积系综,它描述了由(k)个子系统组成的复合量子系统的独立演化。在渐近情况下,当总维数(N = n^k)变得很大时,最近邻分布(P(s))变为泊松分布,但极值间距(P(s_{min}))和(P(s_{max}))的统计显示出与泊松行为的某些偏差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验