Suppr超能文献

使用卡尔曼滤波器合并多摄像头数据以减少运动分析仪器误差。

Merging multi-camera data to reduce motion analysis instrumental errors using Kalman filters.

作者信息

Schwartz Cédric, Denoël Vincent, Forthomme Bénédicte, Croisier Jean-Louis, Brüls Olivier

机构信息

a LAMH, Université de Liège , Chemin des Chevreuils, 1, Bat. 52, Liège 4000 , Belgium.

出版信息

Comput Methods Biomech Biomed Engin. 2015 Jul;18(9):952-960. doi: 10.1080/10255842.2013.864640. Epub 2013 Dec 13.

Abstract

In motion capture systems, markers are often seen by multiple cameras. All cameras do not measure the position of the markers with the same reliability because of environmental factors such as the position of the marker in the field of view or the light intensity received by the cameras. Kalman filters offer a general framework to take the reliability of the various cameras into account and consequently improve the estimation of the marker position. The proposed process can be applied to both passive and active systems. Several reliability models of the cameras are compared for the Codamotion active system, which is considered as a specific illustration. The proposed method significantly reduces the noise in the signal, especially at long-range distances. Therefore, it improves the confidence of the positions at the limits of the field of view.

摘要

在运动捕捉系统中,多个摄像头通常能够看到标记物。由于诸如标记物在视野中的位置或摄像头接收到的光强度等环境因素,并非所有摄像头测量标记物位置的可靠性都相同。卡尔曼滤波器提供了一个通用框架,可将各个摄像头的可靠性考虑在内,从而改进对标记物位置的估计。所提出的方法可应用于被动和主动系统。针对被视为具体示例的Codamotion主动系统,比较了几种摄像头可靠性模型。所提出的方法显著降低了信号中的噪声,尤其是在远距离时。因此,它提高了视野边缘位置的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验