用于减少皮肤伪影对基于标记的人体运动估计影响的运动学模型。

Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation.

作者信息

Cerveri P, Pedotti A, Ferrigno G

机构信息

Bioengineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.

出版信息

J Biomech. 2005 Nov;38(11):2228-36. doi: 10.1016/j.jbiomech.2004.09.032. Epub 2004 Nov 10.

Abstract

The estimation of the skeletal motion obtained from marker-based motion capture systems is known to be affected by significant bias caused by skin movement artifacts, which affects joint center and rotation axis estimation. Among different techniques proposed in the literature, that based on rigid body model, still the most used by commercial motion capture systems, can smooth only part of the above effects without eliminating their main components. In order to sensibly improve the accuracy of the motion estimation, a novel technique, named local motion estimation (LME), is proposed. This rests on a recently described approach that, using virtual humans and extended Kalman filters, estimates the kinematical variables directly from 2D measurements without requiring the 3D marker reconstruction. In this paper, we show how such method can be extended to include the computation of the local marker displacement due to skin artifacts. The 3D marker coordinates, expressed in the corresponding local reference coordinate frames, are inserted into the state vector of the filter and their dynamics is automatically estimated, with adequate accuracy, without assuming any particular deformation function. Simulated experiments of lower limb motion, involving systematic mislocations (5, 10, 20 mm) and random errors of the marker coordinates and joint center locations (+/-5, +/-10, +/-15 mm), have shown that artifact motion can be substantially decoupled from the global skeletal motion with an effective increase of the accuracy wrt standard techniques. In particular, the comparison between the nominal kinematical variables and the one recovered from markers attached to the skin surface proved LME to be sensibly superior (50% in the worse condition) to the methods imposing marker-bone rigidity. In conclusion, while requiring further validation on real movement data, we argue that the proposed method can constitute an appropriate approach toward the improvement of the human motion estimation.

摘要

众所周知,基于标记的运动捕捉系统所获得的骨骼运动估计会受到皮肤运动伪影引起的显著偏差的影响,这会影响关节中心和旋转轴的估计。在文献中提出的不同技术中,基于刚体模型的技术(商业运动捕捉系统仍最常使用)只能平滑上述部分影响,而无法消除其主要成分。为了显著提高运动估计的准确性,提出了一种名为局部运动估计(LME)的新技术。这基于最近描述的一种方法,该方法使用虚拟人体和扩展卡尔曼滤波器,直接从二维测量中估计运动学变量,而无需进行三维标记重建。在本文中,我们展示了如何扩展这种方法以包括由于皮肤伪影引起的局部标记位移的计算。在相应的局部参考坐标系中表示的三维标记坐标被插入到滤波器的状态向量中,并且它们的动力学被自动估计,具有足够的精度,而无需假设任何特定的变形函数。涉及系统错位(5、10、20毫米)以及标记坐标和关节中心位置的随机误差(±5、±10、±15毫米)的下肢运动模拟实验表明,伪影运动可以与全局骨骼运动基本解耦,相对于标准技术,精度有效提高。特别是,将名义运动学变量与从附着在皮肤表面的标记中恢复的变量进行比较,结果证明LME明显优于强制标记与骨骼刚性连接的方法(在最差条件下提高50%)。总之,虽然需要对真实运动数据进行进一步验证,但我们认为所提出的方法可以构成一种改进人体运动估计的合适方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索