University of Cologne, Department of Chemistry, Institute of Biochemistry, Otto-Fischer-Strß 12-14, 50674 Köln, Germany.
Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany; Department of Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
Cell Host Microbe. 2013 Dec 11;14(6):619-30. doi: 10.1016/j.chom.2013.11.006.
Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity.
生物营养型植物病原体在感染后会遇到由脂酶样蛋白增强疾病易感性 1(EDS1)及其序列相关相互作用伙伴衰老相关基因 101(SAG101)和植物抗毒素缺失 4(PAD4)控制的基础抗性层。脂酶样蛋白在被子植物进化过程中保持独立的家族分支,表明其具有不同的功能属性。我们报告了拟南芥 EDS1-SAG101 异源二聚体的晶体结构,其中并列的 N 端 α/β 水解酶和 C 端 α-螺旋 EP 结构域通过一个大的保守界面对齐。对 EDS1-SAG101 异源二聚体和衍生的 EDS1-PAD4 结构模型的突变分析表明,EDS1 在相互排斥的异源复合物内发出信号。尽管所有三种蛋白质的 α/β 水解酶拓扑结构都具有进化保守性,但表明存在非催化抗性机制。相反,各自的 N 端结构域似乎有助于将必需的 EP 结构域结合在一起,从而在异源二聚体上形成新的相互作用表面。不同功能的 EDS1 异源二聚体之间的转换可能解释了该调控节点在植物免疫中的核心重要性和多功能性。