Ahrem Hannes, Pretzel David, Endres Michaela, Conrad Daniel, Courseau Julien, Müller Hartmut, Jaeger Raimund, Kaps Christian, Klemm Dieter O, Kinne Raimund W
Jenpolymer Materials Ltd & Co. KG, Wildenbruchstraße 15, 07745 Jena, Germany.
Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Jena, Klosterlausnitzer Str. 81, D-07607 Eisenberg, Germany.
Acta Biomater. 2014 Mar;10(3):1341-53. doi: 10.1016/j.actbio.2013.12.004. Epub 2013 Dec 12.
The small size and heterogeneity of the pores in bacterial nanocellulose (BNC) hydrogels limit the ingrowth of cells and their use as tissue-engineered implant materials. The use of placeholders during BNC biosynthesis or post-processing steps such as (touch-free) laser perforation can overcome this limitation. Since three-dimensionally arranged channels may be required for homogeneous and functional seeding, three-dimensional (3-D) laser perforation of never-dried BNC hydrogels was performed. Never-dried BNC hydrogels were produced in different shapes by: (i) the cultivation of Gluconacetobacter xylinus (DSM 14666; synonym Komagataeibacter xylinus) in nutrient medium; (ii) the removal of bacterial residues/media components (0.1M NaOH; 30 min; 100 °C) and repeated washing (deionized water; pH 5.8); (iii) the unidirectional or 3-D laser perforation and cutting (pulsed CO2 Rofin SC × 10 laser; 220 μm channel diameter); and (iv) the final autoclaving (2M NaOH; 121 °C; 20 min) and washing (pyrogen-free water). In comparison to unmodified BNC, unidirectionally perforated--and particularly 3-D-perforated - BNC allowed ingrowth into and movement of vital bovine/human chondrocytes throughout the BNC nanofiber network. Laser perforation caused limited structural modifications (i.e. fiber or globular aggregates), but no chemical modifications, as indicated by Fourier transform infrared spectroscopy, X-ray photoelectron scattering and viability tests. Pre-cultured human chondrocytes seeding the surface/channels of laser-perforated BNC expressed cartilage-specific matrix products, indicating chondrocyte differentiation. 3-D-perforated BNC showed compressive strength comparable to that of unmodified samples. Unidirectionally or 3-D-perforated BNC shows high biocompatibility and provides short diffusion distances for nutrients and extracellular matrix components. Also, the resulting channels support migration into the BNC, matrix production and phenotypic stabilization of chondrocytes. It may thus be suitable for in vivo application, e.g. as a cartilage replacement material.
细菌纳米纤维素(BNC)水凝胶中孔隙的小尺寸和异质性限制了细胞向内生长,也限制了其作为组织工程植入材料的应用。在BNC生物合成过程中或诸如(非接触式)激光穿孔等后处理步骤中使用占位符可以克服这一限制。由于均匀且功能性的细胞接种可能需要三维排列的通道,因此对未干燥的BNC水凝胶进行了三维(3-D)激光穿孔。通过以下方式制备不同形状的未干燥BNC水凝胶:(i)在营养培养基中培养木醋杆菌(DSM 14666;同义词木糖酸杆菌);(ii)去除细菌残留物/培养基成分(0.1M NaOH;30分钟;100°C)并反复洗涤(去离子水;pH 5.8);(iii)进行单向或3-D激光穿孔和切割(脉冲CO2 Rofin SC×10激光;通道直径220μm);(iv)最后进行高压灭菌(2M NaOH;121°C;20分钟)并洗涤(无热原水)。与未改性的BNC相比,单向穿孔的——尤其是3-D穿孔的——BNC允许重要的牛/人软骨细胞在整个BNC纳米纤维网络中向内生长和移动。傅里叶变换红外光谱、X射线光电子散射和活力测试表明,激光穿孔导致的结构改变有限(即纤维或球状聚集体),但没有化学修饰。接种在激光穿孔BNC表面/通道上的预培养人软骨细胞表达软骨特异性基质产物,表明软骨细胞分化。3-D穿孔的BNC显示出与未改性样品相当的抗压强度。单向或3-D穿孔的BNC具有高生物相容性,为营养物质和细胞外基质成分提供了短扩散距离。此外,形成的通道支持软骨细胞迁移到BNC中、基质产生和表型稳定。因此,它可能适用于体内应用,例如作为软骨替代材料。