Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Nanotechnology. 2014 Jan 10;25(1):014001. doi: 10.1088/0957-4484/25/1/014001. Epub 2013 Dec 11.
We report parallel topographic imaging and nanolithography using heated microcantilever arrays integrated into a commercial atomic force microscope (AFM). The array has five AFM cantilevers, each of which has an internal resistive heater. The temperatures of the cantilever heaters can be monitored and controlled independently and in parallel. We perform parallel AFM imaging of a region of size 550 μm × 90 μm, where the cantilever heat flow signals provide a measure of the nanometer-scale substrate topography. At a cantilever scan speed of 1134 μm s(-1), we acquire a 3.1 million-pixel image in 62 s with noise-limited vertical resolution of 0.6 nm and pixels of size 351 nm × 45 nm. At a scan speed of 4030 μm s(-1) we acquire a 26.4 million pixel image in 124 s with vertical resolution of 5.4 nm and pixels of size 44 nm × 43 nm. Finally, we demonstrate parallel nanolithography with the cantilever array, including iterations of measure-write-measure nanofabrication, with each cantilever operating independently.
我们报告了使用集成到商用原子力显微镜(AFM)中的加热微悬臂阵列进行的并行地形成像和纳米光刻。该阵列有五个 AFM 悬臂,每个悬臂都有一个内部电阻加热器。悬臂加热器的温度可以独立且并行地进行监测和控制。我们对大小为 550 μm×90 μm 的区域进行了并行 AFM 成像,其中悬臂热流信号提供了纳米级基底地形的测量。在悬臂扫描速度为 1134 μm s(-1)的情况下,我们以噪声限制的垂直分辨率为 0.6 nm 和像素大小为 351 nm×45 nm 的方式在 62 s 内采集了 310 万个像素的图像。在扫描速度为 4030 μm s(-1)的情况下,我们以垂直分辨率为 5.4 nm 和像素大小为 44 nm×43 nm 的方式在 124 s 内采集了 2640 万个像素的图像。最后,我们演示了使用悬臂阵列进行的并行纳米光刻,包括每个悬臂独立运行的测量-写入-测量纳米制造迭代。