Suppr超能文献

用双能 CT 数据在组织替代物中对离子阻止本领进行实验验证。

Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates.

机构信息

Division of Medical Physics in Radiation Oncology, German Cancer Research Center, D-69120 Heidelberg, Germany.

出版信息

Phys Med Biol. 2014 Jan 6;59(1):83-96. doi: 10.1088/0031-9155/59/1/83. Epub 2013 Dec 12.

Abstract

We present an experimental verification of stopping-power-ratio (SPR) prediction from dual energy CT (DECT) with potential use for dose planning in proton and ion therapy. The approach is based on DECT images converted to electron density relative to water ϱe/ϱe, w and effective atomic number Zeff. To establish a parameterization of the I-value by Zeff, 71 tabulated tissue compositions were used. For the experimental assessment of the method we scanned 20 materials (tissue surrogates, polymers, aluminum, titanium) at 80/140Sn kVp and 100/140Sn kVp (Sn: additional tin filtration) and computed the ϱe/ϱe, w and Zeff with a purely image based algorithm. Thereby, we found that ϱe/ϱe, w (Zeff) could be determined with an accuracy of 0.4% (1.7%) for the tissue surrogates with known elemental compositions. SPRs were predicted from DECT images for all 20 materials using the presented approach and were compared to measured water-equivalent path lengths (closely related to SPR). For the tissue surrogates the presented DECT approach was found to predict the experimental values within 0.6%, for aluminum and titanium within an accuracy of 1.7% and 9.4% (from 16-bit reconstructed DECT images).

摘要

我们通过双能 CT(DECT)进行了阻止本领比(SPR)预测的实验验证,该方法可能对质子和离子治疗中的剂量规划有用。该方法基于转换为水相对电子密度的 DECT 图像ϱe/ϱe, w 和有效原子序数 Zeff。为了通过 Zeff 对 I 值进行参数化,使用了 71 种组织成分表。为了对该方法进行实验评估,我们以 80/140Sn kVp 和 100/140Sn kVp(Sn:附加锡过滤)对 20 种材料(组织替代物、聚合物、铝、钛)进行了扫描,并使用纯图像算法计算了ϱe/ϱe, w 和 Zeff。由此,我们发现对于具有已知元素组成的组织替代物,ϱe/ϱe, w(Zeff)可以以 0.4%(1.7%)的精度确定。使用提出的方法,从所有 20 种材料的 DECT 图像中预测了 SPR,并将其与测量的水等效路径长度(与 SPR 密切相关)进行了比较。对于组织替代物,所提出的 DECT 方法被发现可以在 0.6%以内预测实验值,对于铝和钛,在 1.7%和 9.4%(从 16 位重建的 DECT 图像)的精度内预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验