Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, 92093, USA.
Nanotechnology. 2014 Jan 10;25(1):014011. doi: 10.1088/0957-4484/25/1/014011. Epub 2013 Dec 11.
Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.
类似于其他基于蛋白质的水凝胶,细胞外基质 (ECM) 基水凝胶来源于脱细胞组织,具有狭窄的机械性能范围并且迅速降解。这些水凝胶含有天然的细胞黏附位点,形成类似于天然 ECM 的纳米纤维网络,并且可生物降解。在这项研究中,我们通过将聚乙二醇 (PEG) 纳入 ECM 网络来扩展这些类型材料的性能。我们使用脱细胞心肌基质作为组织特异性 ECM 衍生水凝胶的示例。通过两种不同的方法合成心肌基质-PEG 杂化物,即用胺反应性 PEG-星交联蛋白质和光诱导自由基聚合两种不同的多臂 PEG-丙烯酰胺。我们表明,这两种方法都允许通过凝胶电泳和红外光谱将 PEG 接枝到心肌基质上。扫描电子显微镜显示,杂化物仍然含有类似于未修饰的心肌基质的纳米纤维网络,并且纤维直径通过 PEG 结合方法和 PEG 分子量而改变。PEG 接枝还降低了体外酶降解的速率,并增加了材料的硬度。用胺反应性 PEG 合成的杂化物的凝胶化速率为 30 分钟,类似于未修饰的心肌基质,并且 PEG 的掺入并未阻止细胞通过水凝胶黏附和迁移,从而为具有可在体内缓慢降解的可注射 ECM 水凝胶提供了可能性。光聚合自由基体系在照射 4 分钟后凝胶化,允许 3D 封装和细胞培养,与柔软的未修饰的心肌基质不同。这项工作表明,PEG 掺入 ECM 基水凝胶可以扩展材料性能,从而为体外和体内应用开辟新的可能性。