Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, College Station, Texas 77843-3120, United States.
Biomacromolecules. 2013 Jul 8;14(7):2225-33. doi: 10.1021/bm400634j. Epub 2013 Jun 24.
The highly tunable properties of poly(ethylene glycol) (PEG)-based hydrogel systems permit their use in a wide array of regenerative medicine and drug delivery applications. One of the most valuable properties of PEG hydrogels is their intrinsic resistance to protein adsorption and cell adhesion, as it allows for a controlled introduction of desired bioactive factors including proteins, peptides, and drugs. Acrylate-PEG-N-hydroxysuccinimide (Acr-PEG-NHS) is widely utilized as a PEG linker to functionalize bioactive factors with photo-cross-linkable groups. This enables their facile incorporation into PEG hydrogel networks or the use of PEGylation strategies for drug delivery. However, PEG linkers can sterically block integrin binding sites on functionalized proteins and reduce cell-material interactions. In this study we demonstrate that reducing the density of PEG linkers on protein backbones during functionalization results in significantly improved cell adhesion and spreading to bioactive hydrogels. However, this reduction in functionalization density also increases protein loss from the matrix over time due to ester hydrolysis of the Acr-PEG-NHS linkers. To address this, a novel PEG linker, acrylamide-PEG-isocyanate (Aam-PEG-I), with enhanced hydrolytic stability was synthesized. It was found that decreasing functionalization density with Aam-PEG-I resulted in comparable increases in cell adhesion and spreading to Acr-PEG-NHS systems while maintaining protein and bioactivity levels within the hydrogel network over a significantly longer time frame. Thus, Aam-PEG-I provides a new option for protein functionalization for use in a wide range of applications that improves initial and sustained cell-material interactions to enhance control of bioactivity.
聚乙二醇(PEG)基水凝胶系统具有高度可调的特性,使其能够在广泛的再生医学和药物输送应用中使用。PEG 水凝胶最有价值的特性之一是其固有的抗蛋白质吸附和细胞黏附能力,因为它可以控制引入所需的生物活性因子,包括蛋白质、肽和药物。丙烯酰基-PEG-琥珀酰亚胺(Acr-PEG-NHS)被广泛用作 PEG 接头,以将生物活性因子与光交联基团官能化。这使其能够轻易地将其掺入 PEG 水凝胶网络中,或用于药物输送的 PEG 化策略。然而,PEG 接头可能会阻碍功能化蛋白质上整合素的结合位点,并降低细胞与材料的相互作用。在这项研究中,我们证明了在功能化过程中降低蛋白质骨架上 PEG 接头的密度会导致生物活性水凝胶中细胞黏附和铺展显著增加。然而,这种功能化密度的降低也会由于 Acr-PEG-NHS 接头的酯水解而导致蛋白质随时间从基质中损失增加。为了解决这个问题,合成了一种新型的具有增强水解稳定性的 PEG 接头,丙烯酰胺-PEG-异氰酸酯(Aam-PEG-I)。结果发现,与 Acr-PEG-NHS 系统相比,降低 Aam-PEG-I 的功能化密度会导致细胞黏附和铺展的增加相当,但在显著更长的时间内保持水凝胶网络内的蛋白质和生物活性水平。因此,Aam-PEG-I 为蛋白质功能化提供了一种新的选择,可用于广泛的应用,从而改善初始和持续的细胞-材料相互作用,以增强对生物活性的控制。